首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用Gleeble-2000热模拟试验机对Mn18Cr18N高氮奥氏体不锈钢进行高温拉伸试验,利用扫描电镜-能谱仪对拉伸试样断口形貌及断口附近的显微组织进行观察,用Thermo-Calc软件计算试验钢的相变及析出相,研究了Mn18Cr18N高氮奥氏体不锈钢的高温力学性能。结果表明,试验钢的第Ⅰ脆性区>1200 ℃,第Ⅲ脆性区为850~950 ℃,未出现第Ⅱ脆性区,第Ⅰ脆性区的出现主要是在加热过程中试验钢由γ奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为沿晶析出M23C6、M2(C, N)等硬脆相引起的;试验钢的抗拉强度随着拉伸温度升高而降低,断面收缩率在1000~1200 ℃温度范围内逐渐增大并表现出极佳的热塑性,断面收缩率均在70%以上,温度超过1200 ℃后断面收缩率急剧下降;Mn18Cr18N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内试验钢的断面收缩率均在70%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

2.
采用Gleeble-2000热模拟试验机对无磁钻铤用0Cr19Mn21Ni2N高氮奥氏体不锈钢进行高温拉伸试验,用扫描电镜和能谱仪对拉伸试样断口及断口附近的组织进行分析,用Thermo-Calc软件计算试验钢的相变及析出相,研究了0Cr19Mn21Ni2N高氮奥氏体不锈钢的高温塑性变形行为。结果表明,试验钢的第Ⅰ脆性区>1150 ℃,第Ⅲ脆性区为800~950 ℃,未出现第Ⅱ脆性区。第Ⅰ脆性区的出现主要是在加热过程中试验钢由奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为M2(C, N)析出相及Al2O3夹杂物引起的。试验钢的高温抗拉强度随温度升高而逐渐降低,断面收缩率在1000~1150 ℃温度范围内表现出极佳的热塑性,温度超过1150 ℃后断面收缩率逐渐下降,因此0Cr19Mn21Ni2N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内断面收缩率均在73%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

3.
通过热模拟试验研究了不同试验温度下,氮质量分数分别为0.07%、0.34%、0.44%和0.72%的18Mn18Cr N钢的断面收缩率和抗拉强度等力学性能。结果表明:(1)18Mn18Cr N钢的断面收缩率随着试验温度的升高而增大,但当温度高于1 200℃时,略有下降;(2)氮含量增加,钢具有高塑性的温度区变窄,氮质量分数为0.72%的钢,其具有最佳力学性能的温度区缩小至1 150~1 200℃;(3)随着试验温度的升高,18Mn18Cr N钢的抗拉强度均呈线性下降的趋势,且氮含量越高,其高温抗拉强度对温度的变化越敏感;(4)氮含量增加,18Mn18Cr N钢的断面收缩率呈"V"形趋势变化。  相似文献   

4.
为研究超级双相不锈钢00Cr32Ni7Mo3.5N(SAF3207)的高温热塑性,对3207钢进行热拉伸实验并分析断口形貌。结果表明,提高加热温度至1300℃、应变速率到0.1s-1时,能使断面收缩率达82.7%,随着温度从1000℃上升至1300℃,热塑性依次增大,断裂方式从脆性断裂转变至韧性断裂。与00Cr25Ni7Mo4N(SAF2507)双相不锈钢相比,3207钢的热塑性低于2507钢,3207钢的开轧温度为1300℃,其终轧温度必须高于1150℃。而2507钢的开轧温度为1250℃,终轧温度高于1000℃。使用Thermo-Calc软件计算双相钢的平衡相图,对双相钢进行了不同温度热处理以观察其高温组织的演变规律,并结合铁素体测量结果分析了钢的热塑性与温度的关系。  相似文献   

5.
采用Thermo-Calc热力学计算软件,对高铁制动盘用钢在400~1600℃存在的平衡析出相进行了热力学计算,并研究了合金元素对析出相和A3点温度的影响。结果表明,制动盘用钢中主要析出相为MX、MC、M23C6和M7C3,其中M为Cr、Fe、Mn、Mo、V等,X为C、N和空位Va。C、Mn、Cr、Ni元素会降低A3点温度,而Si、Mo、V能提高A3点温度。综合考虑,适当降低C、Mn、Ni和Cr的含量,提高V、Mo的含量,以增加MX、MC的含量和提高钢的A3点温度,从而提高制动盘用钢的力学性能。  相似文献   

6.
采用Thermo-Calc热力学计算软件,对高铁制动盘用钢在400-1600℃存在的平衡析出相进行了热力学计算,并研究了合金元素对析出相和A3点温度的影响。结果表明,制动盘用钢中主要析出相为MX、MC、M23C6和M7C3,其中M为Cr、Fe、Mn、Mo、V等,X为C、N和空位Va。C、Mn、Cr、Ni元素会降低A3点温度,而Si、Mo、V能提高A3点温度。综合考虑,适当降低C、Mn、Ni和Cr的含量,提高V、Mo的含量,以增加MX、MC的含量和提高钢的A3点温度,从而提高制动盘用钢的力学性能。  相似文献   

7.
研究了Cu对00Cr25Ni7Mo4N双相不锈钢组织、力学性能、高温热塑性的影响.结果表明,Cu是非常弱的奥氏体形成元素,对扩大奥氏体相区没有明显的作用;加入1.5% 的Cu,可使00Cr25Ni7Mo4N钢固溶处理后的强度增加,冲击韧性降低,并降低了在900~1100℃固溶处理钢的断面收缩率,而在1150~1250℃温度范围固溶处理,两种钢的断面收缩率相近,均大于60%,热塑性较好.  相似文献   

8.
采用Thermo-Calc热力学软件对Y12Cr18Ni9Cu易切削钢在500~1800℃的析出相进行了热力学计算并得到了平衡凝固相变路径图。结果表明,Y12Cr18Ni9Cu易切削钢的平衡相主要有MnS、液相、δ-铁素体、奥氏体、M23C6、M2(C,N)、σ相。平衡凝固和冷却相变路径:液相→液相+MnS→液相+δ-铁素体+MnS→液相+δ-铁素体+MnS+奥氏体→δ-铁素体+MnS+奥氏体→MnS+奥氏体→MnS+M23C6+奥氏体→MnS+M23C6+奥氏体+M2(C, N)→MnS+M23C6+σ相+奥氏体+M2(C, N)。随着S含量增加,MnS的析出量逐渐增加,析出温度也逐渐升高,Mn含量变化对MnS相的析出量几乎没有影响,但Mn含量增加会使MnS析出温度升高。Y12Cr18Ni9Cu易切削钢中的硫化物呈球形、椭球形、纺锤形或短棒状并以...  相似文献   

9.
首先对Cr18Ni10Ti不锈钢进行1050℃固溶处理及650℃时效24 h处理,随后在不同温度(500 ~ 800℃)下以1.43×10-4 s-1拉伸速率对其进行高温拉伸试验.采用扫描电镜与能谱仪分析了试验钢的组织、析出相及断口形貌,采用高分辨透射电镜观察其位错和晶界处的P和S元素的浓度.结果 表明:Cr18Ni10Ti不锈钢的组织主要是奥氏体组织,基体中有富Cr析出相及AlMgTiO复合析出相.当拉伸温度从500℃升高到800℃时,试验钢的屈服强度、抗拉强度均减小,断面收缩率先减小后增大,在650℃拉伸时,断面收缩率最小.当拉伸温度较低时,试验钢出现明显的颈缩现象,随拉伸温度升高,拉伸过程中的颈缩现象不明显,出现韧窝与沿晶混合断口.当拉伸温度升高到800℃时,试验钢发生蠕变断裂,出现冰糖状断口.第二相、拉伸过程的回复与再结晶、P和S元素的晶界偏聚行为以及晶界蠕变等多种因素的影响使得Cr18Ni10Ti不锈钢在500~800℃拉伸时出现不同的强度与断面收缩率.  相似文献   

10.
在Thermo-Calc热力学软件的辅助设计下,制备了一种针对超临界水堆工况的12Cr低活性铁素体/马氏体钢.通过显微组织观察与分析,同时结合热力学及动力学计算,研究了含12% (vol%)δ铁素体的12Cr3W钢析出行为.结果表明:1050℃淬火780℃回火后,12Cr3W钢中析出相主要为M23C6和Cr2N.M23C6主要在回火马氏体内析出,而针状Cr2N则主要在δ铁素体内析出,Cr2N相对于M23C6容易发生粗化长大,计算结果与实验值吻合.12Cr钢淬火回火后的析出相组成受δ铁素体影响.借助于Thermo-Calc软件计算得到的热力学平衡相图选择合适的淬火温度,可以有效控制淬火后δ铁素体相含量,从而优化显微组织中析出相.  相似文献   

11.
借助Thermo-Calc软件对无磁钻铤用Fe-(15~25)Cr-(15~25)Mn-(0~5)Ni-(0~1)Mo-(0~1)N-(0~0.8)C多元系高氮钢在凝固和冷却过程中的相变及析出行为进行研究。使用Thermo-Calc软件中的TCFE9数据库对该钢相图的垂直截面图进行计算,分析了Cr、Mn、Ni、Mo、N及C元素对无磁钻铤用高氮钢凝固及冷却过程中相变的影响,并得到了平衡凝固相变路径图。结果表明,增加Cr、Mn含量可显著提高合金中氮的溶解度,Mo元素可以微弱提高氮的溶解度,Ni、C元素显著降低氮的溶解度。Ni、C和N含量提高可扩大单相奥氏体相区,具有稳定奥氏体的作用,Cr、Mo与Mn元素缩小单相奥氏体相区,具有稳定铁素体的作用。N元素可以促进M2(C,N)相析出,使M23C6相析出受到抑制。Cr、Mn元素可以促进Sigma相析出,C、N元素抑制Sigma相析出。M23C6相的析出主要受C含量的影响,随着C含量的升高,M23C6相的析出温度显著升高。  相似文献   

12.
借助Thermo-calc软件对Mn18Cr18N奥氏体不锈钢所属的Fe-(16~19)Cr-(16~19)Mn-(0.4~0.7)N-(0.04~0.1)C-(0.1~0.4)Si-(0.1~0.4)Ni多元体系在凝固过程中的相变及析出行为进行了研究。采用Thermo-calc中TCFE9数据库对该体系的垂直截面图进行计算,分析了不同组元对凝固和冷却过程中相变的影响,并得到了Mn18Cr18N奥氏体不锈钢的平衡凝固相变路径图。结果表明:C、N、Si和Ni含量的提高可扩大γ奥氏体区,Cr和Mn具有稳定铁素体作用。平衡凝固相变路径与M23C6相析出温度主要取决于C含量;Cr2N相析出温度主要取决于N含量;σ相析出温度主要受Cr含量影响。  相似文献   

13.
研究了固溶温度对超级双相不锈钢00Cr25Ni7Mo4N显微组织及耐点蚀性能的影响.结果表明,在900~1020 ℃之间有金属间化合物σ相析出,对钢的性能和组织产生一定影响,特别是明显降低钢的耐点蚀性能;在1040~1100 ℃之间固溶处理耐点蚀性能最好.运用Thermo-Calc热力学软件分别计算相图、相含量、α和γ相的PREN(耐点蚀当量)值,与试验结果进行了对比分析.σ相稳定温度比Thermo-Calc预测结果高,在980 ℃以上计算的α和γ相含量与试验结果较一致,但计算的α和γ相PREN值不能正确评定耐点蚀性.  相似文献   

14.
利用FactSage软件中的FSstel数据库对53Cr21Mn9Ni4N耐热钢的相图进行计算,分析了氮元素对凝固及冷却过程中相变及析出相的影响,得到了53Cr21Mn9Ni4N耐热钢平衡凝固及冷却相变路径图,并用OM、SEM、XRD、EDS等对53Cr21Mn9Ni4N耐热钢在1200 ℃固溶3、10、20、40和60 min后的显微组织及碳化物演变规律进行了研究。结果表明,53Cr21Mn9Ni4N耐热钢由1600 ℃平衡冷却至300 ℃的过程中完整的平衡相变路径为:液相+气体→液相→液相+δ铁素体→液相+δ铁素体+奥氏体→液相+奥氏体→奥氏体→奥氏体+M23C6→奥氏体+M2(C,N)+M23C6→奥氏体+M2(C,N)+M23C6+α铁素体→奥氏体+M2(C,N)+M23C6+α铁素体+σ相。M23C6的析出温度随着氮含量的增加而降低,M2(C,N)的析出物温度随着氮含量的增加而升高,M23C6会因M2(C,N)的析出受到抑制。53Cr21Mn9Ni4N耐热钢的铸态组织非常不均匀,奥氏体呈树枝晶状生长,枝晶间析出大量层片状碳化物。随着固溶时间的增加,分布在枝晶间的层片状碳化物逐渐变成块状及短棒状,碳化物的数量逐渐减少,粗壮的树枝晶也逐渐变得细小。53Cr21Mn9Ni4N耐热钢在1200 ℃固溶后的组织及碳化物均得到明显改善。  相似文献   

15.
测试了超级双相不锈钢00Cr25Ni7Mo3.5WCu N(UNS32760)室温拉伸性能和冲击性能,运用Thermo-Calc热力学软件计算了相比例及元素分布,研究了W含量对00Cr25Ni7Mo3.5WCu N钢力学性能的影响。结果表明,W的增加使得该钢中σ相的完全固溶温度升高;当温度达950~1000℃时,钢中析出σ相导致冲击性能显著降低,强度提高。高于1000℃时,00Cr25Ni7Mo3.5WCu N钢中σ相完全溶解,此时随着W含量增加,材料强度提高,每1%W的增量会提高30 MPa屈服强度和25~30 MPa抗拉强度。  相似文献   

16.
在Gleeble-1500热模拟试验机上进行了Nb-Ti与Nb-V复合微合金化钢的高温拉伸试验,并用Thermo-Calc软件计算了两种试验钢不同析出相的析出温度,结合断口形貌对比分析了两种钢的高温塑性特点。结果表明:根据断面收缩率的变化规律,可以将Nb-Ti与Nb-V复合微合金化钢的整个塑性温度区间分为第Ⅰ脆性区、高塑性区和第Ⅲ脆性区,其中Nb-Ti钢的塑性区间温度范围分别为1320℃~熔点,880~1320℃和715~880℃;Nb-V钢塑性区间温度范围是1310℃~熔点,905~1310℃和705~905℃。Thermo-Calc软件计算结果表明钛元素对Al N的析出有较强的抑制作用,同时也抑制了微细Nb(C,N)的析出,能够改善含铌微合金钢的高温塑性;Nb-V钢第Ⅲ脆性区温度范围较Nb-Ti钢更宽,整体断面收缩率更差。  相似文献   

17.
《铸造技术》2016,(11):2358-2361
通过对渗氮工艺处理后1Cr18Ni9Ti钢的组织观察及力学性能测量,研究了1Cr18Ni9Ti钢的渗氮层组织及性能与渗氮温度的关系。研究结果表明:未经过渗氮处理的1Cr18Ni9Ti钢主要相成分是α-Fe相,在300℃温度下渗氮处理后的物相主要有α′N、γ′-Fe4N及ε-Fe3C相,其中γ′-Fe4N相的含量较少,在350℃和400℃温度下渗氮处理后的物相主要有α′N、γ′-Fe4N、ε-Fe3C及Cr N相。经过渗氮处理后,钢表面的硬度有明显提升,硬度值随着渗氮温度的降低而减小。在300℃温度下渗氮处理可以一定程度上提升1Cr18Ni9Ti钢的耐蚀性。  相似文献   

18.
借助Thermo-Calc热力学计算软件,分析了028合金主要元素对氮饱和溶解度和平衡相析出温度的影响,设计了不同氮含量的试验合金。采用光学显微镜、扫描电镜等方法研究了不同固溶温度下试验合金的微观组织。结果表明,Cr、Mo和Mn提高氮的饱和溶解度,Ni、Cu降低氮的饱和溶解度;Ni显著降低σ相析出温度,Cr、Mo显著提高σ相析出温度。随着固溶温度的升高,晶粒的等轴性提高,在1080 ℃固溶时,试验合金充分固溶获得再结晶完全的等轴晶。当固溶温度超过1110 ℃时,试验合金回复再结晶完全,晶粒迅速长大;固溶温度相同条件下,氮含量越高,试验合金的平均晶粒尺寸越小,说明氮可以起到细化晶粒的作用。  相似文献   

19.
利用Thermo-Calc软件模拟计算了不同含量Cr、Ni的TP347H钢的平衡相组成。结果表明,原始TP347H钢随着温度升高,析出相M23C6、MX相和σ相的含量逐渐减少,700 ℃时析出相中主要为MX相和σ相。不同Cr、Ni含量TP347H钢中,随着Cr含量的升高,相图中主要生成相有向右移动的趋势,Cr是促进σ相析出的元素,Ni是抑制σ相析出的元素。  相似文献   

20.
王英虎  金磊 《金属热处理》2023,48(4):166-172
为了研究Y12Cr18Ni9Cu奥氏体易切削钢的高温力学性能,利用Gleeble-3500热模拟机对Y12Cr18Ni9Cu钢进行了不同温度的高温拉伸试验,并对断口形貌、抗拉强度以及断面收缩率进行了分析。结果表明,随着温度升高试验钢的高温抗拉强度逐渐降低,断面收缩率逐渐增加。试验钢的低温脆性区为800~900℃,未出现高温脆性区。低温脆性区的出现是由于材料在热变形过程中没有发生动态再结晶,并且由于硫化物与基体所能承受的变形能力不同,裂纹在硫化物与基体界面产生,最终导致脆性断裂。在1150~1250℃温度范围内,试验钢发生了动态再结晶并表现出良好的高温热塑性,Y12Cr18Ni9Cu奥氏体易切削钢的热加工温度应选择在1150~1250℃之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号