首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The desired results of variable topology material layout computations are stable and discrete material distributions that optimize the performance of structural systems. To achieve such material layout designs a continuous topology design framework based on hybrid combinations of classical Reuss (compliant) and Voigt (stiff) mixing rules is investigated. To avoid checkerboarding instabilities, the continuous topology optimization formulation is coupled with a novel spatial filtering procedure. The issue of obtaining globally optimal discrete layout designs with the proposed formulation is investigated using a continuation method which gradually transitions from the stiff Voigt formulation to the compliant Reuss formulation. The very good performance of the proposed methods is demonstrated on four structural topology design optimization problems from the literature. © 1997 John Wiley & sons, Ltd.  相似文献   

3.
An algorithm for optimal design of non-linear shell structures is presented. The algorithm uses numerical optimization techniques and nonlinear finite element analysis to find a minimum weight structure subject to equilibrium conditions, stability constraints and displacement constraints. A barrier transformation is used to treat an apparent non-smoothness arising from posing the stability constraints in terms of the eigenvalues of the Hessian of the potential energy of the structure. A sequential quadratic programming strategy is used to solve the resulting non-linear optimization problem. Matrix sparsity in the constraint Jacobian is exploited because of the large number of variables. The usefulness of the proposed algorithm is demonstrated by minimizing the weight of a number of stiffened thin shell structures.  相似文献   

4.
This paper implements a domain integral energy method for modelling crack growth in composite material shell structures using the finite element method. Volume integral expressions to evaluate the dynamic energy release rate in a through‐thickness three‐dimensional crack are derived. Using the domain integral, the energy release rate computation is implemented in the DYNA3D explicit non‐linear dynamic finite element analysis program wherein crack propagation is modelled by releasing the constraints between initially constrained node pairs. The implementation enables the program to either determine the energy resistance response for the material (provided experimental data is available) or predict the rate of crack propagation in shell structures. The numerical implementation was verified by simulating mode I and mode III slow crack growth problems in semi‐infinite transversely isotropic media, for which analytic solutions are available. Oscillations of energy following the release of nodal constraints as the crack propagates in discrete increments were suppressed using light mass proportional damping and a moving averaging scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Simultaneous shape optimization of thin‐walled curved shell structures and involved hole boundaries is studied in this paper. A novel bispace parameterization method is proposed for the first time to define global and local shape design variables both in the Cartesian coordinate system and the intrinsic coordinate system. This method has the advantage of achieving a simultaneous optimization of the global shape of the shell surface and the local shape of the openings attached automatically on the former. Inherent problems, for example, the effective parameterization of shape design variables, mapping operation between two spaces, and sensitivity analysis with respect to both kinds of design variables are highlighted. A design procedure is given to show how both kinds of design variables are managed together and how the whole design flowchart is carried out with relevant formulations. Numerical examples are presented and the effects of both kinds of design variables upon the optimal solutions are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Structural designers are reconsidering traditional design procedures using structural optimization techniques. Although shape and sizing optimization techniques have facilitated a great improvement in the emergence of new optimum designs, they are still limited by the fact that a suitable topology must be assumed initially. In this paper a hybrid algorithm entitled constrained adaptive topology optimization, or CATO is introduced. The algorithm, based on an artificial material model and an adaptive updating scheme, combines ideas from the mathematically rigorous homogenization (h) methods and the intuitive evolutionary (e) methods. The algorithm is applied to shell structures under static or free vibration situations. For the static situation, the objective is to produce the stiffest structure subject to given loading conditions, boundary conditions and material properties. For the free vibration situation, the objective is to maximize or minimize a chosen frequency. In both cases, a constraint on the structural volume/mass is applied and the optimization process is achieved by redistributing the material through the shell structure. The efficiency of the proposed algorithm is illustrated through several numerical examples of shells under either static or free vibration situations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Kun Cai  Jiao Shi 《工程优选》2014,46(2):244-260
Since the elasticity of bi-modulus materials is stress dependent, it is difficult to apply most conventional topology optimization methods to such bi-modulus structures owing to great computational expense. Therefore, this study employs the material-replacement method to improve the computational efficiency for topology optimization of bi-modulus structures. In this method, first, the bi-modulus material is replaced by two isotropic materials which have the same tensile or compressive modulus. Secondly, the isotropic materials for finite elements are determined by the local stress/strain states. The local elemental stiffness can be modified according to the current modulus and stress state of the element. Thirdly, the relative densities of elements, acting as the design variables, are updated using the optimality criterion method. Finally, the distributions of elemental densities and moduli are obtained for further applications. Several typical numerical examples are used to demonstrate the effectiveness of the proposed method.  相似文献   

8.
A continuum‐based shape and configuration design sensitivity analysis (DSA) method for a finite deformation elastoplastic shell structure has been developed. Shell elastoplasticity is treated using the projection method that performs the return mapping on the subspace defined by the zero‐normal stress condition. An incrementally objective integration scheme is used in the context of finite deformation shell analysis, wherein the stress objectivity is preserved for finite rotation increments. The material derivative concept is used to develop a continuum‐based shape and configuration DSA method. Significant computational efficiency is obtained by solving the design sensitivity equation without iteration at each converged load step using the same consistent tangent stiffness matrix. Numerical implementation of the proposed shape and configuration DSA is carried out using the meshfree method. The accuracy and efficiency of the proposed method is illustrated using numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
通过曲线纤维轨迹设计,变刚度复合材料回转壳将拥有比常刚度(直线纤维)回转壳更好的抗屈曲稳定性,为此,研究了复合载荷作用下曲线纤维铺层形式和几何参数对变刚度复合材料回转壳屈曲性能的影响规律。首先根据回转壳横截面圆弧变化改进曲线纤维角度线性描述方法,建立了变刚度复合材料回转壳的参数化有限元模型;其次,结合序列二次响应面方法和回转壳屈曲优化模型,搭建了复合材料回转壳曲线纤维轨迹优化的设计流程;最后,以准各向同性铺层复合材料回转壳为比较基准,对弯扭载荷作用变刚度圆柱壳和轴压、弯矩和扭矩分别作用变刚度椭圆柱壳在不同铺层方式、不同几何参数下的屈曲性能进行了优化比较。结果表明:弯扭载荷作用下,变刚度圆柱壳的屈曲性能随弯矩载荷占比增加而提高,且均好于准各向同性圆柱壳,但扭矩载荷占优时,优化常刚度圆柱壳的屈曲性能更具有优势;不同载荷作用下,具有较小截面方向比的变刚度椭圆柱壳屈曲性能要明显好于对应的准各向同性椭圆柱壳,且横截面越接近圆形,曲线纤维对椭圆柱壳屈曲性能的改善越弱。   相似文献   

10.
Parameter studies, genetic algorithms and Monte Carlo type calculations are examples of pleasantly parallel computational tasks. Pleasantly parallel computational tasks can be effectively calculated in computer clusters or grids. In this work, we consider a weight minimization problem of a laminated composite structure in the post-buckling region. The design variables are the number of layers and the layer orientations given in a discrete set of allowable angles for layer orientations. Optimization is carried out using a deterministic search process, where the lay-up configurations are generated iteratively in the design space from the selected design points of the population at the preceding cycle. Computation is performed using NorduGrid grid computing platform. In this work, we briefly go through some general grid concepts and the use of grid in optimization of laminated composite structures.  相似文献   

11.
12.
The discrete optimal orientation design of the composite laminate can be treated as a material selection problem dealt with by using the concept of continuous topology optimization method. In this work, a new bi‐value coding parameterization (BCP) scheme of closed form is proposed to this aim. The basic idea of the BCP scheme is to ‘code’ each material phase using integer values of +1 and –1 so that each available material phase has one unique ‘code’ consisting of +1 and/or –1 assigned to design variables. Theoretical and numerical comparisons between the proposed BCP scheme and existing schemes show that the BCP has the advantage of an evident reduction of the number of design variables in logarithmic form. The benefit is particularly remarkable when the number of candidate materials becomes important in large‐scale problems. Numerical tests with up to 36 candidate material orientations are illustrated for the first time to indicate the reliability and efficiency of the BCP scheme in solving this kind of problem. It proves that the BCP is an interesting and valuable scheme to achieve the optimal orientations for large‐scale design problems. Besides, a four‐layer laminate example is tested to demonstrate that the proposed BCP scheme can easily be extended to multilayer problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
提出一种新颖的圆形多胞复合填充结构,该结构采用蜂窝和泡沫两类材料的交错复合填充。采用实验验证与数值研究相结合的方法,系统地研究了蜂窝和泡沫材料在全填充、部分填充及交互填充结构中的耐撞性。研究结果表明,针对单一材料填充的多胞圆管,部分填充结构比全填充结构具有更好的耐撞性能,其中,环形蜂窝填充结构(H40)和中心泡沫填充结构(F01)具有更优异的能量吸收特性。针对双材料复合填充的多胞圆管,则是中心泡沫填充与环形蜂窝填充的复合结构(F01H40)具有最佳的耐撞吸能性。最后,进一步结合Kriging近似技术与粒子群数值优化方法,对复合填充结构进行多目标优化设计,探索其最优耐撞性与最优参数匹配。结果表明,环形蜂窝部分填充结构(H40)、中心泡沫填充与环形蜂窝填充的复合全填充结构(F01H40)具有最优的耐撞性能。  相似文献   

14.
Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis of topology optimization with elastoplastic material modeling. Concrete and steel are both considered as elastoplastic materials, including the appropriate yield criteria and post‐yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
针对频率约束的结构材料优化问题,基于结构拓扑优化思想,提出变频率区间约束的结构材料优化方法。借鉴均匀化及ICM(独立、连续、映射)方法,以微观单元拓扑变量倒数为设计变量,导出宏观单元等效质量矩阵及导数,进而获得频率一阶近似展开式。结合变频率区间约束思想,获得以结构质量为目标函数、频率为约束条件的连续体微结构拓扑优化近似模型;采用对偶方法求解。通过算例验证该方法的有效性及可行性,表明考虑质量矩阵变化影响所得优化结果更合理。  相似文献   

16.
This paper presents the development of a computational model for the topology optimization problem, using a material distribution approach, of a 2-D linear-elastic solid subjected to thermal loads, with a compliance objective function and an isoperimetric constraint on volume. Defining formally the augmented Lagrangian associated with the optimization problem, the optimality conditions are derived analytically. The results of analysis are implemented in a computer code to produce numerical solutions for the optimal topology, considering the temperature distribution independent of design. The design optimization problem is solved via a sequence of linearized subproblems. The computational model developed is tested in example problems. The influence of both the temperature and the finite element model on the optimal solution obtained is analysed.  相似文献   

17.
Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber‐reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three‐dimensional solid approach and first‐order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Tunnel construction commonly proceeds in an environment of layered geological formation. Design for tunnel support relies on the tunnel location and the mismatch of different layers. The present paper proposes a topology optimization method for the design of tunnel support. The design domain is discretized by finite elements. An element is composed of the original rock (hard or soft) and the reinforcing material (rock reinforced by grouting or bolting). The design issue involves the distribution of reinforcements. We model the reinforced host ground by a power‐weighted mixture law. The ratios of two phases in various elements are optimized to minimize the deformation of the tunnel. The method enables a computer‐aided design for the supports of underground tunnels embedded within layered geological structures. The reinforced areas for the tunnel are displayed under the passive geological stress and the active external loading. Four kinds of rock formations are examined. They are homogeneous rock, hard–soft–hard (HSH) sandwich structure, two‐layer structure with the soft rock at the top and the hard rock at the bottom (SH), and the one with the hard rock at the top and the soft rock at the bottom (HS). The simulation reveals the high efficiency of tunnel support by optimizing its topologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Thin‐walled structures, when compressed, are prone to buckling. To fully utilize the capabilities of such structures, the post‐buckling response should be considered and optimized in the design process. This work presents a novel method for gradient‐based design optimization of the post‐buckling performance of structures. The post‐buckling analysis is based on Koiter's asymptotic method. To perform gradient‐based optimization, the design sensitivities of the Koiter factors are derived, and new design optimization formulations based on the Koiter factors are presented. The proposed optimization formulations are demonstrated on a composite square plate and a curved panel where the post‐buckling stability is optimized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
李迎 《声学技术》2011,30(3):232-236
如何解决Lamb波检测机理的复杂性并将之运用于复合材料损伤检测是个重要课题.以玻璃纤维增强的复合材料层合板为研究对象,搭建试验平台,利用集成在复合材料层合板上的PZT压电陶瓷片作为驱动元件和传感元件,对接收的Lamb波信号进行分析与研究,从信号频率范围、信号中心频率、波振幅值、波形个数和信号激励形式等五个方面完成Lam...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号