首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

2.
Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p<0.05, d=1.2) lower in exercising nephrectomised mice compared to sedentary nephrectomised mice. There was a strong, negative correlation between average distance run each week and plaque area in nephrectomised and control mice (r=–0.76, p=0.048 and r=–0.73, p=0.062; respectively). In vitro aortic contraction and endothelial-independent and endothelial-dependent relaxation were not influenced by exercise (p>0.05). Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p<0.001 and p<0.05, respectively), while levels of IL-10, MCP-1 and MIP-1α were not significantly influenced by nephrectomy or voluntary exercise (p>0.05). Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.  相似文献   

3.

Objective

IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s) as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.

Methods and Results

Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apo)E deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC) natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.

Conclusions

The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.  相似文献   

4.
We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.  相似文献   

5.
The expression of neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated in some cancers; therefore NGAL has potential as a tumor biomarker. Although the regulation mechanism for this is unknown, one study has shown that it is likely to involve a microRNA (miRNA). Here, we investigate the relation between miRNA expression and NGAL expression, and the role of NGAL in tumorigenesis. Using miRNA target–detecting software, we analyze the mRNA sequence of NGAL and identify a target site for microRNA-138 (miR-138) in nucleotides 25–53 of the 3′ UTR. We then analyze NGAL and miR-138 expression in three cancer cell lines originating from breast, endometrial and pancreatic carcinomas (the MCF-7, RL95-2 and AsPC-1 cell lines), respectively, using quantitative (real-time) PCR and western blot analysis. Metastasis is a critical event in cancer progression, in which malignant cell proliferation, migration and invasion increase. To determine whether miR-138-regulated NGAL expression is associated with metastasis, the proliferation and migration of the cell line are examined after miR-138 transfection. Using nude mice, we examine both the tumorigenicity of these cell lines and of miR-138-transfected cancer cells in vivo, as well as the effect of treating tumors with an antibody against NGAL. Our results show that these cancer cell lines down-regulate NGAL when miR-138 is highly expressed. Ectopic transfection of miR-138 suppresses NGAL expression and cell migration in RL95-2 and AsPC-1 cells, demonstrating that miR-138-regulated NGAL expression is associated with cell migration. Additionally, injection of the NGAL antibody diminishes NGAL-mediated tumorigenesis in nude mice, and miR-138 transfection of cancer cells reduces tumor formation. As the cell proliferation data showed that the tumor size should be regulated by NGAL-related cell growth. Taken together, our results indicate that NGAL may be a good target for cancer therapy and suggest that miR-138 acts as a tumor suppressor and may prevent metastasis.  相似文献   

6.
7.
Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.  相似文献   

8.
《Gender Medicine》2012,9(5):319-328
BackgroundDespite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial.ObjectiveWe sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol.MethodsMale and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development.ResultsFemale mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice.ConclusionsThese data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice in response to a low-fat diet.  相似文献   

9.
Lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first and rate-limiting step in chylomicron/very low density lipoprotein clearance at the luminal surface of the capillaries. Angiopoietin-like protein 3 (ANGPTL3) is shown to inhibit LPL activity and plays important roles in modulating lipoprotein metabolism in vivo. However, the mechanism by which it inhibits LPL activity remains poorly understood. Using cell-based analysis of the interaction between ANGPTL3, furin, proprotein convertase subtilisin/kexin type 5 (PCSK5), paired amino acid converting enzyme-4 (PACE4), and LPL, we demonstrated that the cleavage of LPL by proprotein convertases is an inactivation process, similar to that seen for endothelial lipase cleavage. At physiological concentrations and in the presence of cells, ANGPTL3 is a potent inhibitor of LPL. This action is due to the fact that ANGPTL3 can enhance LPL cleavage by endogenous furin and PACE4 but not by PCSK5. This effect is specific to LPL but not endothelial lipase. Both N- and C-terminal domains of LPL are required for ANGPTL3-enhanced cleavage, and the N-terminal domain of ANGPTL3 is sufficient to exert its effect on LPL cleavage. Moreover, ANGPTL3 enhances LPL cleavage in the presence of either heparan sulfate proteoglycans or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). By enhancing LPL cleavage, ANGPTL3 dissociates LPL from the cell surface, inhibiting both the catalytic and noncatalytic functions of LPL. Taken together, our data provide a molecular connection between ANGPTL3, LPL, and proprotein convertases, which may represent a rapid signal communication among different metabolically active tissues to maintain energy homeostasis. These novel findings provide a new paradigm of specific protease-substrate interaction and further improve our knowledge of LPL biology.  相似文献   

10.

Background

Cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed (CCN) 3 has been recently reported to play a role in regulating inflammation of vascular endothelial cells. However, the role of CCN3 in atherosclerosis, which is characterized by vascular inflammation, remains unclear.

Hypothesis and Objectives

Overexpression of CCN3 may relieve the inflammation response in and inhibit the progress of atherosclerosis. We aimed to explore the potential roles of CCN3 in inflammation in atherosclerosis.

Strategy and Main Results

In in vitro studies using cultured human aortic endothelial cells and human umbilical vein endothelial cells, CCN3 mRNA and protein expression significantly decreased in response to tumor necrosis factor-α and interleukin-1β treatments (p<0.05), when analyzed by quantitative real-time polymerase chain reaction and Western blot. Using a mouse model of atherosclerosis, the mRNA and protein levels of CCN3 decreased by 72.2% (p = 0.041) and 86.4% (p = 0.036), respectively, compared with levels in wild-type control mice, respectively. Overexpression of CCN3 by adenovirus-mediated gene overexpression decreased low-density lipoprotein cholesterol by 48.9% (p = 0.017), total cholesterol by 58.9% (p = 0.031), and triglycerides by 56.8% (p = 0.022), and it increased high-density lipoprotein cholesterol level by 2.16-fold (p = 0.039), compared with control groups. Additionally, a reduced plaque area and increased fibrous cap were observed (p<0.05). Furthermore, CCN3 overexpression decreased cell adhesion molecule-1 mRNA expression by 84.7% (p = 0.007) and intercellular adhesion molecule-1 mRNA expression by 61.2% (p = 0.044). Inflammatory factors, including matrix metalloproteinases, cyclooxygenase 2, and tissue factor also significantly (p<0.05) decreased with CCN3 overexpression in the atherosclerotic mouse model. Additionally, CCN1 and CCN2, which have been reported to be highly expressed in aortic atherosclerotic plaques, were significantly downregulated (p<0.05) by CCN3 overexpression.

Conclusion

CCN3 overexpression is associated with control of inflammatory processes and reversion of dyslipidemia in the process of atherosclerosis, which implies that CCN3 may be a promising target in the treatment of atherosclerosis.  相似文献   

11.
Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr?/?) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr?/? mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr?/? mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.  相似文献   

12.
脂蛋白脂酶(lipoprotcin lipase,LPL)是脂质代谢的关键酶,主要水解甘油三酯,在乳糜微粒及极低密度脂蛋白的代谢中发挥重要作用.该酶的缺乏或活力异常,与血脂异常、代谢综合症、动脉粥样硬化、糖尿病、子痫前期等疾病有一定关系.一些具有调脂作用的中药能够影响脂蛋白脂酶的活力或表达.  相似文献   

13.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1–10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism.  相似文献   

14.

Background

Xanthohumol is expected to be a potent anti-atherosclerotic agent due to its inhibition of cholesteryl ester transfer protein (CETP). In this study, we hypothesized that xanthohumol prevents atherosclerosis in vivo and used CETP-transgenic mice (CETP-Tg mice) to evaluate xanthohumol as a functional agent.

Methodology/Principal Findings

Two strains of mice, CETP-Tg and C57BL/6N (wild-type), were fed a high cholesterol diet with or without 0.05% (w/w) xanthohumol ad libitum for 18 weeks. In CETP-Tg mice, xanthohumol significantly decreased accumulated cholesterol in the aortic arch and increased HDL cholesterol (HDL-C) when compared to the control group (without xanthohumol). Xanthohumol had no significant effect in wild-type mice. CETP activity was significantly decreased after xanthohumol addition in CETP-Tg mice compared with the control group and it inversely correlated with HDL-C (%) (P<0.05). Furthermore, apolipoprotein E (apoE) was enriched in serum and the HDL-fraction in CETP-Tg mice after xanthohumol addition, suggesting that xanthohumol ameliorates reverse cholesterol transport via apoE-rich HDL resulting from CETP inhibition.

Conclusions

Our results suggest xanthohumol prevents cholesterol accumulation in atherogenic regions by HDL-C metabolism via CETP inhibition leading to apoE enhancement.  相似文献   

15.
16.
摘要 目的:研究脂蛋白脂肪酶(lipoprotein lipase,LPL)基因敲除对雨蛙素诱导的高脂血症急性胰腺炎小鼠肺损伤的影响。方法:将C57BL/6小鼠分为三组,Control组和AP-Model组为野生型C57 BL/6小鼠,LPL ko组为LPL基因敲除C57 BL/6小鼠;Control组小鼠正常饲养,AP-Model和LPL ko组小鼠建立高脂血症性急性胰腺炎模型,比较三组小鼠死亡率、胰腺和肺病理损伤以及血清淀粉酶(amylase, AMY)、丙二醛(malondialdehyde, MDA)、肿瘤坏死因子-α(Tumor necrosis factor-α, TNF-α)和白介素-6(Interleukin-6, IL-6)含量。结果:急性胰腺炎建立48 h后,Control组、AP-Model组和LPL ko组小鼠死亡率分别为0 %、20 %和40 %。与Control组相比,AP-Model组和LPL ko组小鼠急性胰腺炎诱导24和48 h后的胰腺和肺组织湿/干重比值,胰腺和肺组织病理评分,血清AMY、MDA、TNF-α和IL-6含量均显著升高(P<0.05);与AP-Model组相比,LPL ko组小鼠急性胰腺炎诱导24和48 h后的胰腺和肺组织湿/干重比值,胰腺和肺组织病理评分,血清AMY、MDA、TNF-α和IL-6含量均显著升高(P<0.05)。结论:LPL基因敲除小鼠急性高脂血症性胰腺炎肺损伤更严重,其机制可能与LPL基因敲除引起更强的氧化应激和炎症有关。  相似文献   

17.
Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.  相似文献   

18.

Introduction

Endurance training improves peripheral insulin sensitivity in the liver and the skeletal muscle, but the mechanism for this effect is poorly understood. Recently, it was proposed that insulin clearance plays a major role in both glucose homeostasis and insulin sensitivity. Therefore, our goal was to determine the mechanism by which endurance training improves insulin sensitivity and how it regulates insulin clearance in mice.

Methods

Mice were treadmill-trained for 4 weeks at 70–80% of maximal oxygen consumption (VO2 max) for 60 min, 5 days a week. The glucose tolerance and the insulin resistance were determined using an IPGTT and an IPITT, respectively, and the insulin decay rate was calculated from the insulin clearance. Protein expression and phosphorylation in the liver and the skeletal muscle were ascertained by Western blot.

Results

Trained mice exhibited an increased VO2 max, time to exhaustion, glucose tolerance and insulin sensitivity. They had smaller fat pads and lower plasma concentrations of insulin and glucose. Endurance training inhibited insulin clearance and reduced expression of IDE in the liver, while also inhibiting insulin secretion by pancreatic islets. There was increased phosphorylation of both the canonical (IR-AKT) and the non-canonical (CaMKII-AMPK-ACC) insulin pathways in the liver of trained mice, whereas only the CaMKII-AMPK pathway was increased in the skeletal muscle.

Conclusion

Endurance training improved glucose homeostasis not only by increasing peripheral insulin sensitivity but also by decreasing insulin clearance and reducing IDE expression in the liver.  相似文献   

19.
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.  相似文献   

20.
Strain C57BL/6J and A/J differ at two genes determining atherosclerosis susceptibility. The first gene, Ath-1, was described earlier and this report characterizes Ath-2. The alleles at Ath-2 are r for resistance and s for susceptibility to atherosclerosis. The resistant phenotype in female mice is characterized by high plasma high density lipoprotein-cholesterol levels (74 mg/dl +/- SEM 2) and very few lesions/mouse after 14 weeks of consumption of an atherogenic diet (0.1 +/- SEM 0.1 in a predetermined region of the aorta). The susceptible phenotype in female mice is characterized by low levels of high density lipoprotein-cholesterol (35 mg/dl +/- SEM 1) and 1.2 lesions/mouse +/- SEM 0.2 in the same region of the aorta. In Ath-2 heterozygotes, resistance is dominant to susceptibility. Recombinant inbred strains derived from C57BL/6 and A were characterized for Apoa 1, Apoa 2 and susceptibility to atherosclerosis. Ath-1 and Ath-2 interact with each other so that resistant alleles at either locus confer a resistant phenotype to the animal. The map position of Ath-2 is not known, but Ath-2 does not map near genes determining the apolipoproteins for A-I, A-II, or E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号