首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tissue distribution of 14 elements was simulatneously determined in rats 28 d after hypophysectomy (HPY), thyroparathyroidectomy (TPTY), adrenalectomy (ADY), and castration (CTN). The elements Na, K, Ca, Mg, Fe, S, P, Rb, Sr, Mn, Cu, and Zn were investigated in whole blood, plasma, brain, liver, kidney, heart, skeletal muscle, and bone. Additionally Mo was determined in kidney and liver. The following results were obtained: 1) With regard to hormone deficiency: HPY induced the most noticeable, variations on all the elements tested owing probably to the direct and indirect effects of adenohypophyseal hormones. ADY led to the expected modification of Na and K but also to a Sr accumulation and a Rb depletion. TPTY induced a sharp decrease in plasma and tissues Ca, an increase in plasma P, but did not disturb the two elements in bone. An increase of Rb in many tissues and of Fe in heart, kidney, and liver were also observed. CTN had little consequences except in bone whose Cu and Fe contents were increased: 2) With regard to element variations: K, Mg, and S underwent little change. Discriminations were revealed between elements such as K and Rb, Ca and Sr, Ca and Mg, and Cu and Zn. The changes of Rb and Sr were consistent with regulatory mechanisms. The accumulation of Fe and Cu in tissues such as liver after HPY, TPTY, and ADY, suggest that the hormonal deficiencies could worsen the hemochromatosis with Wilson's disease; 3), With regard to plasma and tissues: No correlation appeared in element levels between plasma and other tissues. Brain was the least affected and liver, kidney and bone the most.  相似文献   

2.
The effects of adrenalectomy (ADY) and of replacement therapy using a mineralocorticoid, deoxycorticosterone (DOC) and a glucocorticoid, dexamethasone (DEX) on the tissue distribution of elements in the rat, were studied under semichronic conditions. The elements, Na, K, Ca, Mg, Fe, S, P, Rb, Sr, Mn, Cu, and Zn were determined in whole blood, plasma, brain liver, kidney, heart, skeletal muscle, spleen, thymus, and bone. Additionally Mo was determined in kidney and liver and Ba in bone. ADY modified concentrations of all elements tested. Small changes were observed for K, Mg, Ca, S, and P, whereas much larger changes were noted for Na, Rb, and Sr. Cu, Zn, and Fe were mainly modified in liver and kidney, organs involved in storage and/or elimination. The consequences of ADY were corrected fairly well by DEX for Mg, Mn, Ca, Cu, and Mo; by DOC for Na and K, and by the two corticoids for Zn, Fe, Sr, and Rb. This study revealed that corticoids, mainly glucocorticoids, play an important role in the plasma and tissue balance of elements. It is suggested that these results may have a pathological and clinical significance.  相似文献   

3.
川东红池坝地区红三叶(Trifoliumpratense)和鸭茅(Dactylisglomerata)人工草地土壤和植物营养元素的含量特征如下:(1)土壤中的元素含量以铁、钾和镁较高,钠、钙、氮、锰和磷较低,硫、锌、硼、铜和钼微少;(2)从元素的富集特征来看,该区土壤中的钙、硫为重度淋溶元素,钾、磷、镁、锌、钠为中度淋溶元素,铁、铜属轻度淋溶元素,锰属富集元素;(3)根据元素的生物吸收系列,红三叶属氮-钙型植物,鸭茅属氮-钾-磷型植物。(4)两种牧草的生物吸收系数,均以钙、硫、磷较高,钠、铁较低,其余7种元素介于二者之间。  相似文献   

4.
The effect of age on 12 chemical element contents in intact prostate of 64 apparently healthy, 13-60-year-old men (mean age 36.5 years) was investigated by inductively coupled plasma atomic emission spectrometry. Mean values (M ± SΕΜ) for mass fraction (milligrams/kilogram, on dry weight basis) of Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, and Zn were: Ba 1.18 ± 0.12, Ca 2,178 ± 160, Cu 10.7 ± 0.9, Fe 122 ± 5, K 12,530 ± 360, Mg 1,100 ± 70, Na 10,470 ± 320, P 7,580 ± 300, S 8,720 ± 180, Sr 1.85 ± 0.28, and Zn 782 ± 97, respectively. The upper limit of mean content of V was ≤0.22 mg/kg. A tendency of age-related increase in Ca, Fe, Na, and Zn mass fraction as well an increase in Zn/Ba, Zn/Ca, Zn/Cu, Zn/Fe, Zn/K, Zn/Mg, Zn/Na, Zn/P, Zn/S, and Zn/Sr ratios in prostate was observed. A significant positive correlation was seen between the prostatic zinc and Ca, Cu, Fe, Mg, Na, and P contents.  相似文献   

5.
Age-related changes in the concentrations of constituent elements in the brains of rats and mice 1 wk to 24 mo old were determined with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Seventeen elements could be determined with reasonable accuracy and reproducibility. They were P, K, Na, Mg, Ca, Fe, Zn, Cu, Rb, Al, Mn, Sr, Mo, Co, Pb, Cs, and Cd in order of concentrations in the adult rat brains. In these elements, six major elements (P, K, Na, Fe, Mg, Ca) were determined with ICP-AES and the others with ICP-MS. The concentrations of each element and the pattern of age-related changes were similar between the rat and mouse brains. The elements of which concentrations decreased with aging were K and Rb. On the other hand, the concentrations of some metal elements, including Fe, Cu, Sr, and Co, appeared to increase with growth and aging. The concentrations of other elements were relatively constant throughout the age examined.  相似文献   

6.
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.  相似文献   

7.
Inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were used to determine age-related changes in the concentrations of constituent elements in the livers of Wistar rats of 1 week to 12 months old. At first, sample preparation and analytical conditions were investigated in order to set up a simple routine procedure for measuring multiple elements simultaneously. Seventeen elements in the standard reference samples of bovine and pork livers as well as rat liver samples could be determined with a reasonable precision and reproducibility. They were P, K, Na, Fe, Mg, Ca, Zn, Rb, Cu, Mn, Mo, Al, Co, Sr, Cs, Pb, and Cd in order of the levels of concentration in the adult rat livers. Of these elements, the five major elements (P, K, Na, Fe, Mg, Ca) were determined with ICP-AES and the others with ICP-MS. Although the number of animals was too small to draw a statistically definite conclusion, it seems that age-related changes in the concentrations of these elements could be categorized into three general patterns: (1) remaining essentially constant throughout the animal ages, as observed for P, K, Na, Mg, Ca, Rb, Sr, Cs, and Pb, (2) increasing with age, as observed for Fe, Mn, Mo, Co, and Cd, and (3) decreasing with age, especially in the early stages of growth, as observed for Cu and Zn.  相似文献   

8.
Leccinum scabrum sporocarps and associated topsoils from two areas in Poland have been characterized for contents and bioconcentration potential of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn. Topsoil and fruitbody element composition varied between the two study sites, most likely as a result of local soil geochemistry. Element content of the labile fraction in topsoil from both sites followed the ‘pseudo‐total’ fraction and median values (mg kg?1 dry matter) were: K 380 and 340, Mg 760 and 840, P 1100 and 920, Al 3800 and 8100, Ag 0.31 and 0.28, Ba 28 and 37, Ca 920 and 790, Cd 0.23 and 0.23, Co 2.0 and 1.7, Cu 3.2 and 3.6, Fe 2800 and 6300, Mn 280 and 180, Na 99 and 110, Ni 7.8 and 8.8, Pb 12 and 18, Rb 1.3 and 2.1, Sr 4.8 and 4.0 and Zn 22 and 19, respectively. Only for some elements such as K, Mg, Al, Ag, Ca, Co, Mn, Na, Ni, Sr and Zn we found concentration differences between the two study sites for the caps of sporocarps. With the exception of Al, Mn, Na and Pb, stipes showed a similar tendency. Caps had a higher concentration of K, Rb, P, Mg, Al, Ag, Cu, Fe, Zn, Cd, Pb and Ni compared to stipes, while Na, Ba and Sr contents were higher in stipes. The comparison of soil and fruitbody concentrations indicates that L. scabrum bioconcentrate some elements while others are bioexcluded.  相似文献   

9.
Ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and tripolyphosphate (TPP) sodium salts were given orally to rats at the dose of 1 mmol/kg/d for 35 d. The concentrations of Na, K, Ca, Mg, P, S, Fe, Sr, Cu, and Zn were determined in blood, plasma, brain, heart, muscle, liver, kidney, duodenum, and bone of control rats and of the rats receiving EDTA, NTA, and TPP. The main effect induced by EDTA, NTA, and TPP was a decrease of the concentrations of several elements Ca, Mg, Fe, P in the duodenum. Otherwise, EDTA induced an increase of Zn in the kidney (+ 20%), NTA, an increase of Fe in liver (+ 29%), and particularly an increase of Zn in bone (+ 44%). TPP induced a slight decrease of Zn and Cu in liver. In conclusion, EDTA, NTA, and TPP taken orally at the dose of 1 mmol/kg/d for 35 d induced moderate changes of the concentrations of some elements in rat tissues, but without signs of toxicity.  相似文献   

10.
The characteristics of the contents of 20 elements (Al, Fe, Mn, Ca, Mg, K, S, Si, P, Cd, Cu, Zn, Ti, Ni, Sr, Mo, Na, B, Cr, V) in 16 plant species collected from the Three Gorges Region in China were investigated. The average contents of Ca, K and Mg were higher than 1 000 μg·g-1, that of Al, P, Si, Fe, S and Mn ranged between 100—1 000 μg·g-1 and Ti, Cu, Ni, Cr, Mo, Cd and V were less than 10 μg·g- 1. The level of Na content was less than that of the reported. The main character of the element contents was of the Ca> K type. The contents of P, S, Ca and K in different plant samples showed a normal distribution pattern, while Al and Mn showed a elements lognormal distribution pattern. Plant species differed greatly in the element contents. On analyzing the coefficient of variation (C. V., % ), Al, Mn, Mg, Ni, Sr and Fe had higher C.V., while the C.V. of K, S, P, Cr, Cd and Cu was less than 60%, and Cu had the lowest C.V. The correlations between Al and Fe, Al and Ti, Al and Cr, A1 and V, Cd and Sr, Cd and Mo, Fe and V, Zn and Cr, Ni and Sr, Mg and Ni, Mo and Sr, Ca and Sr, Cr and Mo, Na and Mg, Na and P, P and S were statistically significant in different plant species. The classification of the 16 plant species and 20 dements by two-way indicator species analysis (TWINSPAN) method may suggest the difference in dement contents of the different plant species.  相似文献   

11.
A investigation was undertaken to measure the presence of trace elements in some intracranial tumors using the instrumental neutron activation analysis technique. The following 20 minor and trace elements were investigated: Na, Mg, Al, P, Cl, K, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Br, Rb, Sb, I, and Cs. Our results are compared with other trace element analyses in human brain tissue.  相似文献   

12.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

13.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

14.
Influence of trace elements in body metabolism and their physiological importance in various diseases have motivated their accurate and quantitative determination in biological tissues and fluids. Instrumental Neutron Activation Analysis (INAA) using short and long term irradiation has been employed to determine five minor elements (Cl, K, Na, Mg, P) and 15 trace elements (As, Br, Co, Cr, Cs, Cu, Fe, Hg, Mn, Rb, Sb, Se, Sc, Sr, and Zn) in cancerous and normal breast tissue from 30 patients of four clinical stages. Several elements show enhancement in cancerous breast tissue. Selenium shows maximum enhancement of 94.7% followed by K (81.6%), Sc (66.7%), Cu (58.2%), Na (48.5%), P (44.4%), and Zn (39.2%). Some element, such as Fe, Cr, and Mn, are depressed by 30.8, 30.1, and 12.8%, respectively. These elements compete for binding sites in the cell, change its enzymatic activity and exert direct or indirect action on the carcinogenic process accelerating the growth of tumors. This is further evidenced by histopathological examination of cancerous cells showing poor cytological differentiation. An attempt has been made to correlate trace element concentrations of Se, Cu, Zn, Rb, Br, Hg, As, Co, Fe, Cr, and Mn and the ratios of Se/Zn, K/P, Cu/Zn, Na/K, and Se/Fe with the clinical stages of cancer. Inhibition of enzymatic activity caused by variation in trace element concentrations results in immunological breakdown of the body system.  相似文献   

15.
Trace elements participate in the organ specific impact of 1,2-dichloroethane (EDC) and Disulfiram (tetraethylthiuram disulfide; Antabuse (DSF)) administered singly or together, on male Sprague-Dawley rats exposed by diet (AIN-76) to DSF (0 and 0.15% for 10 d before and during exposure to EDC) and by inhalation to EDC (0,153, 304, 455 ppm (v/v); 7 h/d for 5 d/wk for 30 exposure days). Kidney, liver, spleen, and testes at exposure d 30 as well as progressive urine samples were examined for elemental content by simultaneous inductively coupled plasma atomic emission spectroscopy. Each compound singly or together produced EDC dose related (r≥0.8) changes in metal content in organs relative to controls. There were increases induced by EDC alone for P and Sr in the liver and decreases for Fe, Mg, and P in the spleen. EDC in DSF-exposed animals caused increases in Ca, Cu, Fe, Mn, and S and a decrease in K in the liver; increases in Ca, Cu, Fe, Mn, Mo, P, and S and a decrease of Zn in the testes; an increase in Fe and a decrease in K in the spleen; and an increase of P in the kidney. DSF alone increased Cu in the liver but decreased it in the testes and kidney; Pb was increased in the liver and kidney and Zn in the liver, spleen, and kidney; Al and Si were increased also in the liver, S in the spleen, and K in the kidney; Mn and Na were decreased in the kidney. The organs showing histopathology (the liver and testes) both showed increases in Ca, Cu, Fe, Mn, and S. Metals in urine characterized a “shock” impact of the initial exposure by initial excretion of Na and retention of most other elements. After steady state (>12 d), EDC alone caused increases for Sr and Zn; for EDC-DSF, EDC also decreased Na in addition to the changes elicited by DSF alone (increases in S and Zn and a decrease for Cu). The results were interpreted from the perspective of the effects of metals on the glutathione detoxicative pathway, the concentration of free diethyldithiocarbamate in urine, and an interaction with bone. Mechanisms of action of EDC, DSF, and EDC-DSF must include consideration of trace elements in addition to organic intermediates, metabolites, and enzymes.  相似文献   

16.
The accumulation is described of N, P, K, S, Ca, Mg, Na, Fe,Zn, Mn and Cu in the developing pericarp and seed of two speciesof seagrass. Both species showed essentially the same patterns,which resemble those of herbaceous terrestrial plants. Therewas a close relation between dry matter and nutrient accumulation.N, P, K, Fe, Zn, Mn and Cu accumulated in the fruit againstlarge concentration gradients, with discrimination against Na.Seeds accumulated N, P and trace elements to a greater extentthan pericarps and other plant parts; P was apparently retrievedfrom pericarps to a greater extent than other elements. Calculationswere made of the losses of these elements from seagrass meadowsin shed fruits. Posidonia spp., seagrass, nutrient accumulation in fruits  相似文献   

17.
湘西地区木通果实微量元素的测定   总被引:8,自引:1,他引:7  
采用马弗炉干法灰化消化样品,火馅原子吸收法连续测定白木通Akebia trifoliata var.australis (Cieli._Kehd、三叶木通A.trifoliata(Thumb.)Koidz、木通A.quinata Decne.果实中微量金属元素,检测出K,Ca,Na,Mg,Fe,Zn,Mn,Cu等8种元素含量。3种植物果实中K,Ca,Mg含量较高(>0.1000mg/g),其中K元素远高于其他元素,Na,Cu含量较低(<0.0100mg/g)。Fe,Zn,Mn的含量处于中等水平。白木通果实中K,Me,Zn,Mn 4种矿质元素高于三叶木通和木通。木通果实中Ca,Fe两种元素稍高于白木通、三叶木通。Na,Cu两种微量元素在3种果实中含量基本相拟。  相似文献   

18.
Mineral elements are important components of medicinal herbs, and their concentrations are affected by many factors. In this study, Ca, Mg, Na, K, Fe, Mn, Cu, and Zn concentrations in wild Saposhnikovia divaricata and its rhizosphere soil collected from seven locations at two different times in China were measured, and influences of rhizosphere soil on those minerals in plant were evaluated. The results showed that mean concentrations of eight minerals in plant samples decreased in the order: Ca > Mg > Na > K > Fe > Zn > Mn > Cu, and those in the soil samples followed the following order: Na > Fe > Ca > K > Mg > Mn > Zn > Cu. Mean concentrations of Ca, Na, Mg, and K in plants were higher than those in soils, while higher mean concentrations of the other four minerals were found in soils. It was found that there was a positive correlation of Mg, Na, and Cu concentrations in the plant with those in the soil respectively, but a negative correlation of Mn concentration in plant with that in the soil. Except Ca, K, and Mn, the other five minerals in plant were all directly affected by one or more chemical compositions of soil. The results also indicate that pH value and concentrations of total nitrogen, Mg, Mn, and Cu in soil had significant correlations with multimineral elements in plant. In a word, mineral elements uptake of S. divaricata can be changed by adjusting the soil fertility levels to meet the need of appropriate quality control of S. divaricata.  相似文献   

19.
The concentrations of 28 elements (Al, Br, Ca, Cl, Co, Cu, Cr, Fe, Ga, Hg, K, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Se, Si, Sr, Ti, V, Y, and Zn) were measured in mane hair by the particle-induced X-ray emission method. Except for Br, Cl, K, S, and P, the trace element concentrations in mane hair of horses are similar to literature values for human hair. The values obtained are not dependent on the horse's age, breed, and sex and could be used as reference values in the assessment of diseases and nutritional status in equines.  相似文献   

20.
This work focuses on the determination of chemical elements in sweet oranges of variety Valencia produced under organic and conventional systems using instrumental neutron activation analysis and inductively coupled plasma mass spectrometry. The distribution of chemical elements was variable among the fruit parts with usually higher concentrations of Br, Ca, Ce, K, La, Na, Rb, and Sc in the peel. However, K, Na, and Rb also presented high values in the juice samples, while Fe and Zn were higher in the seeds. Differences between organic and conventional oranges were found for Br and Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号