首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

2.
A series of Gd100−xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys were prepared by arc-melting. The Curie temperature (TC) associated with the ferromagnetic-paramagnetic transitions, derived from M-T curves, show decrease in TC for as-cast alloys (∼279 K) as compared to as-cast Gd (∼292 K). No appreciable decrease in the |ΔSM|max values ∼4.6 J/kg K (0-2 T) and ∼8.6 J/kg K (0-5 T) were observed upon alloying Gd with Mn up to x ≤ 15 at.%. Refrigerant capacity (q) showed negligible variation ∼195 J/kg (0-2 T) and ∼450 J/kg (0-5 T) with increasing Mn (up to x ≤ 15 at.%) content. Similar values of |ΔSM|max and q coupled with ∼13 K decrease in TC for as-cast Gd100−xMnx (0 ≤ x ≤ 15) alloys as compared to Gd, suggests expansion of working temperature region of Gd upon alloying with Mn up to 15 at.%. Low cost, adjustable TC, favorable magnetocaloric properties make Gd100−xMnx alloys potential candidates as second-order transition based magnetic refrigerants for near room temperature air-conditioning and magnetic refrigeration.  相似文献   

3.
The Ce2Fe17−xMnx (x = 0-2) compounds demonstrate a complex temperature dependence of the magnetocaloric effect MCE, which is inverse in a narrow temperature interval just below Néel temperature TN and normal at higher or lower temperatures. The normal MCE exhibits two peaks in the vicinity of temperatures of ferromagnetic ordering ΘT and TN for compositions x = 0-0.35, 1.3-2 or one peak near TN for antiferromagnets with x = 0.5-1. The maximal change of the peak entropy −SM is about 3 J/kg K in a field of 5 T for the compounds with x = 0-0.5 at T ∼230 K close to TN. The drastic decrease of the MCE, by half, in the Ce2Fe17−xMnx system is traceable to a decrease of the spontaneous magnetization and the helical type of magnetic states in the compounds.  相似文献   

4.
Optical properties of intermetallic isostructural compounds LaNi5−xCux (x = 0, 0.6, 1, 1.2) have been studied in the spectral range from 0.22 to 15 μm using the ellipsometry method. It was found that the substitution of copper for nickel leads to local changes in the optical conductivity spectra. Theoretical calculations of the electronic structure and interband optical conductivity of LaNi5−xCux compounds with x = 0, 1, 2, 3 were performed in the generalized gradient approximation within the pseudopotential plane-wave method PWSCF. Both the optical spectroscopic measurements and theoretical calculations demonstrate the presence of a broad absorption band around 4 eV associated with the Cu 3d → Ni 3d electron transitions and increasing with the growth of copper content.  相似文献   

5.
Multicomponent Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloy powders milled for 60 h were prepared by mechanical alloying (MA). The structure and crystallization behavior were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Ni enhances the amorphisation of alloy powders. Particle size increases with increasing Ni content. Both onset crystallization temperature Tx and the first crystallization peak temperature Tp of the four alloys shift to a higher temperature with increasing heating rate while melting temperature (Tm) is just the opposite. Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloys all have a large supercooled liquid region ΔTx. The supercooled liquid region ΔTx increases and the crystallization activation energy E decreases with increasing Ni content.  相似文献   

6.
A spinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition at around 226 K. Non-magnetic substitution effect on the M-I transition, TM-I, in Cu(Ir1−xMx)2S4 (M = Sn, Hf) has been studied on the focus of the rather low composition region of x. Magnetic property of Cu(Ir1−xMx)2S4 (M = Sn, Hf) has been examined experimentally. The TM-I decreases with increasing x and the temperature hysteresis becomes unclear within the experimental errors. The step anomaly in the magnetic susceptibility smears out and the TM-I becomes ill defined around x = 0.20 in Cu(Ir1−xSnx)2S4, and x = 0.10 in Cu(Ir1−xHfx)2S4, respectively. These substitutions play an important role in decoupling the spin-dimerization of Ir4+-Ir4+ in CuIr2S4, and lead the destruction of the metal-insulator transition.  相似文献   

7.
A set of Zn0.97−xCuxCr0.03O (0 ≤ x ≤ 0.03) samples has been synthesized by the sol-gel method. The structural, optical and magnetic properties of the samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM). With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to wurtzite structure of ZnO, but for Zn0.94Cu0.03Cr0.03O, the secondary phase of Cu emerged. PL measurements showed that Zn0.97−xCuxCr0.03O powders and pure ZnO with the Cu concentration varied from 0.00 to 0.02 exhibited obvious blue shift; the green emission peak could be effectively enhanced with the increase of the Cu concentration. Magnetic measurements indicated that room-temperature ferromagnetism of Zn0.97−xCuxCr0.03O was an intrinsic property when Cu concentration was less than 0.02. The saturation magnetization of Zn0.97−xCuxCr0.03O (x = 0, 0.01, 0.02) increased with the increase of the Cu concentration.  相似文献   

8.
Superconductors Ba1−xKxBiO3 and body-centered double perovskites Ba1−xKxBi1−yNayO3 have been selectively synthesized by a facile hydrothermal route. The appropriate ratio and adding sequence of initial reagents, alkalinity, reaction temperature and time are the critical factors that influence the crystal growth of the compounds. The purity and homogeneity of the crystals were detected by the ICP, SEM, EDX and TEM studies. Magnetic measurements show that the superconducting transition temperatures TC of Ba1−xKxBiO3 decrease from 22 K (for x = 0.35) to 8 K (for x = 0.55) with increasing the K doping level.  相似文献   

9.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

10.
We report on the room temperature strong (∼80%) electroresistance (ER) in the double perovskite with mixed Mn valence: Sr2−xGdxMnTiO6, 0 ≤ x ≤ 1. Both, continuous and pulsed current-voltage curves are almost identical which indicates that the observed electroresistance is not associated with heating. This is also supported by simultaneous temperature measurements. ER is negligible (absent) in the x = 0 compound and increases with the increase of Gd content ‘x’. The amplitude of ER has a maximum for x = 0.75, suggesting that ER is determined by both the double exchange and the Mn3+ concentration. At the same time, magnetic interactions change from the antiferromagnetic (x = 0) to ferromagnetic ones as x → 1, thus linking the ER with ferromagnetism.  相似文献   

11.
X-ray diffraction and transmission electron microscopy measurements of melt-spun Gd100−xFex (0 ≤ x ≤ 40) and inert-gas condensed/compacted samples (3.8 ≤ x ≤ 12.7) reveal a structure of crystalline hcp-Gd grains surrounded by a non-crystalline Gd1−xeffFexeff phase, where xeff > x is the effective iron concentration within the amorphous region. The two-phase structure is responsible for an unusual dependence of the coercivity on temperature in which non-zero coercivity is observed above the hcp-Gd Tc with a peak near 320 K. The coercivity decreases as the hcp-Gd grains order, then increases with decreasing temperature. This behavior is explained by the presence of magnetically correlated Fe-rich regions.  相似文献   

12.
Substitutional compounds Cr1−xNixSb2 (0 ≤ x ≤ 0.1) were synthesized, and the effect of Ni substitution on transport and thermoelectric properties of Cr1−xNixSb2 were investigated at the temperatures from 7 to 310 K. The results indicated that the magnitudes of the resistivity and thermopower of Cr1−xNixSb2 decreased greatly with increasing Ni content at low temperatures, owing to an increase in electron concentration caused by Ni substitution for Cr. Experiments also showed that the low-temperature lattice thermal conductivity of Cr1−xNixSb2 decreased substantially with increasing Ni content due to an enhancement of phonon scattering by the increased number of Ni atoms. As a result, the figure of merit, ZT, of lightly doped Cr0.99Ni0.01Sb2 was improved at T > ∼230 K. Specifically, the ZT of Cr0.99Ni0.01Sb2 at 310 K was approximately ∼29% larger than that of CrSb2, indicating that thermoelectric properties of CrSb2 can be improved by an appropriate substitution of Ni for Cr.  相似文献   

13.
The SmFe1−xCoxAsO (x = 0 − 0.25) superconductors were synthesized by mechanical alloying (MA) and rapid sintering method with Co atoms doped into FeAs layers to replace the Fe sites. The phase purity and superconducting properties of the samples were characterized by X-ray diffraction, electrical resistivity, magnetic susceptibility and Hall coefficient. All the samples belong to the tetragonal ZrCuSiAs structure type with the grain size in 1-3 μm. The superconducting critical temperature Tc of SmFe0.9Co0.1AsO was 12.5 K, and the structure/SDW transition was suppressed by Co doping. The negative Hall coefficient of SmFe0.9Co0.1AsO indicated the electron conduction in the sample. The charge carrier density is about 2 × 1020 cm−3 at the temperature lower than 150 K, larger than that of SmFeAsO.  相似文献   

14.
The addition of a third element to the Ni-Ti system often changes the product and the path of the martensitic transformation of the alloy, which is a direct B2-B19′ transformation for the NiTi alloy in the fully annealed state. In this study we investigate the martensitic transformation of fully annealed Ni50−xTi50Cux (x = 3-10 at%) shape memory alloy (SMA) samples using differential scanning calorimetry (DSC) and the four-probe electrical resistance (ER) measurements under stress-free conditions. DSC and ER data show that the ternary alloy goes through a direct B2-B19′ transformation for Cu content between 3 and 7 at% and through the two-stage B2-B19-B19′ transformation for Cu content between 8 and 10 at%. We find good agreement between the two techniques as regards the detection of the phase transformation temperatures. B19′ starting and finishing temperatures decreases with the increases of Cu content and show a significant reduction starting from 7 at%; the range of temperatures in which B19 is stable increases with increasing Cu content.  相似文献   

15.
DyCuxGa2−x (x = 0-2.0) compounds have been synthesized; meanwhile, their crystal structure and magnetic properties have been investigated by X-ray diffraction and magnetic measurements. The result shows that the continuous solid-solution series crystallize in three phases, with the structure types of AlB2 (x = 0-0.2), DyCuGe (x = 0.3-0.6) and CeCu2 (x = 0.7-2.0), respectively. The main reason to form the three structure types is considered to be the average atomic radius ratio of R to Cu/Ga. Magnetic-ordering transition of the compounds with x = 0.2-0.6 takes place at about 20 K and 113 K, while those of other compounds only takes place at about 20 K, which is attributed to the change of the near Dy-Dy distances and the ordered substitution of Ga by Cu.  相似文献   

16.
The effect of different mild post-annealing treatments in air, at 270 °C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70 nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (∼1022 cm−3), low electrical resistivity (∼10−4 Ω cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (∼10−3 to ∼10−2 Ω cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity.  相似文献   

17.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

18.
The structural, elastic and electronic properties of Mg(Cu1−xZnx)2 alloys (x = 0, 0.25, 0.5,and 0.75) were investigated by means of first-principle calculations within the framework of density functional theory (DFT). The calculation results demonstrated that the partial substitution of Cu with Zn in MgCu2 leaded to an increase of lattice constants, and the optimized structural parameters were in very good agreement with the available experimental values. From energetic point of view, it was found that with increase of Zn content the structural stability of Mg(Cu1−xZnx)2 alloys decreased apparently. The single-crystal elastic constants were obtained by computing total energy as a function of strain, and then the bulk modulus B, shear modulus G, Young's modulus Y and Poisson's ratio ν of polycrystalline aggregates were derived. The calculated results showed that among the Mg(Cu1−xZnx)2 alloys, MgCuZn exhibited the largest stiffness, while Mg2Cu3Zn showed the best ductility. Finally, the electronic density of states (DOSs) and charge density distribution were further studied and discussed.  相似文献   

19.
A series of [(Fe1−xCox)72Mo4B24]94Dy6 (x = 0.1, 0.2, 0.3, 0.4 and 0.5 at.%) bulk metallic glasses (BMGs) in rod geometries with critical diameter up to 3 mm were fabricated by copper mold casting method. This alloy system exhibited good thermal stability with high glass transition temperature (Tg) 860 K and crystallization temperature (Tx) 945 K. The addition of Co was found to be effective in adjusting the alloy composition deeper to eutectic, leading to lower liquidus temperature (Tl). The [(Fe0.8Co0.2)72Mo4B24]94Dy6 alloy showed the largest supercooled liquid region (ΔTx = Tx − Tg = 92 K), reduced glass transition temperature (Trg = Tg/Tl = 0.622) and gamma parameter (γ = Tx/(Tg + Tl) = 0.424) among the present system. Maximum compressive fracture strength of 3540 MPa and micro-Vickers hardness of 1185 kg/mm2 was achieved, resulting from the strong bonding structure among the alloy constituents. The alloy system possessed soft magnetic properties with high saturation magnetization of 56.61-61.78 A m2/kg and coercivity in the range of 222-264.2 A/m, which might be suitable for application in power electronics devices.  相似文献   

20.
A series of Eu3+ activated Na3Gd1−xEux(PO4)2 (0 ≤ x ≤ 1) phosphors were synthesized by solid-state reaction method. The structures and photo-luminescent properties of these phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the orthorhombic Na3Gd(PO4)2. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370-410 nm) light. The intensities of magnetic dipole transition 5D0 → 7F1 and forced electric dipole transition 5D0 → 7F2 are comparable, and the energy ratio (5D0 → 7F1/5D0 → 7F2) is 1.1. The emission spectra exhibit strong reddish orange performance (CIE chromaticity coordinates: x = 0.62, y = 0.38), which is due to the 5D0 → 7FJ transitions of Eu3+ ions. The correlation between the structure and the photo-luminescent properties of the phosphors was studied. The energy transfer and concentration quenching of the phosphors were discussed. Na3Gd1−xEux(PO4)2 has a potential application for white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号