首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Large deformation soil behavior underpins the operation and performance for a wide range of key geotechnical structures and needs to be properly considered in their modeling, analysis, and design. The material point method (MPM) has gained increasing popularity recently over conventional numerical methods such as finite element method (FEM) in tackling large deformation problems. In this study, we present a novel hierarchical coupling scheme to integrate MPM with discrete element method (DEM) for multiscale modeling of large deformation in geomechanics. The MPM is employed to treat a typical boundary value problem that may experience large deformation, and the DEM is used to derive the nonlinear material response from small strain to finite strain required by MPM for each of its material points. The proposed coupling framework not only inherits the advantages of MPM in tackling large deformation engineering problems over the use of FEM (eg, no need for remeshing to avoid mesh distortion in FEM), but also helps avoid the need for complicated, phenomenological assumptions on constitutive material models for soil exhibiting high nonlinearity at finite strain. The proposed framework lends great convenience for us to relate rich grain-scale information and key micromechanical mechanisms to macroscopic observations of granular soils over all deformation levels, from initial small-strain stage en route to large deformation regime before failure. Several classic geomechanics examples are used to demonstrate the key features the new MPM/DEM framework can offer on large deformation simulations, including biaxial compression test, rigid footing, soil-pipe interaction, and soil column collapse.  相似文献   

2.
Double-scale numerical methods constitute an effective tool for simultaneously representing the complex nature of geomaterials and treating real-scale engineering problems such as a tunnel excavation or a pressuremetre at a reasonable numerical cost. This paper presents an approach coupling discrete elements (DEM) at the microscale with finite elements (FEM) at the macroscale. In this approach, a DEM-based numerical constitutive law is embedded into a standard FEM formulation. In this regard, an exhaustive discussion is presented on how a 2D/3D granular assembly can be used to generate, step by step along the overall computation process, a consistent Numerically Homogenised Law. The paper also focuses on some recent developments including a comprehensive discussion of the efficiency of Newton-like operators, the introduction of a regularisation technique at the macroscale by means of a second gradient framework, and the development of parallelisation techniques to alleviate the computational cost of the proposed approach. Some real-scale problems taking into account the material spatial variability are illustrated, proving the numerical efficiency of the proposed approach and the benefit of a particle-based strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号