首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and strength of brazed joints for monolithic SiC and SiCf/SiC composites are presented and discussed; the brazing technique is based on the use of the 84Si-16Ti (at%) eutectic alloy. The rather low melting point of the used alloy allows to avoid a degradation of the fibre/matrix-interfaces in the composite materials. All the joints did not show any discontinuities and defects at the interface and revealed a fine eutectic structure. Moreover, in the case of composites, the joint layer appeared well adherent both to the matrix and the fibre interphase, and the brazing alloy infiltration looked sufficiently controlled. High resolving electron microscopic investigations of the microstructure and of the nanochemistry (HREM, EELS, esp. ELNES) revealed atomically sharp interfaces without interdiffusion or phase formation at the interlayer leading to the conclusion that direct chemical bonds are responsible for the adhesion. The joints of SiCf/SiC composites showed 71 ± 10 MPa shear strength at RT and nearly the same values at 600°C.  相似文献   

2.
The fibre-matrix interfacial zone formed during the isothermal/isobaric chemical vapour infiltration processing of SiC fibres (ex-polycarbosilane)/boron nitride/SiC matrix composites has been analysed by TEM/electron energy loss spectroscopy, Auger electron spectroscopy, and secondary ion mass spectroscopy. In the composites, the boron nitride interphase (deposited from BF3-NH3) is made of turbostratic boron nitride, almost stoichiometric but containing some oxygen (less than 5 at %). The boron nitride layer stacks are randomly orientated except in the very vicinity of the fibre surface where they lie almost parallel to the substrate. The long chemical vapour infiltration treatment at 1000 °C used to infiltrate the SiC matrix acts as an annealing treatment for the metastable ex-polycarbosilane fibres which gives rise to the growth of an SiO2/carbon amorphous double layer at the boron nitride/fibre interface. Deflection of microcracks arising from the failure of the brittle SiC-matrix occurs at the boron nitride/SiO2 interface considered to be the weaker link in the matrix/boron nitride interphase/SiO2/carbon/fibre sequence. It is suggested that the combination of the boron nitride layered interphase and SiO2/carbon fibre decomposition products might play an important role in determining the propagation path of microcracks in the fibre/matrix interfacial zones and could be responsible, at least to some extent, for the non-brittle behaviour of such composites.  相似文献   

3.
通过在碳化硅纤维表面原位生长纳米线得到具有多级增强结构的碳化硅复合材料, 对复合材料引入纳米线后的微观结构、弯曲强度以及损伤的变化过程进行了研究。研究结果表明, 相较于原始的碳化硅纤维增强碳化硅复合材料, 碳化硅纳米线可以明显提高基体沉积效率并改善材料的弯曲力学性能。从声发射技术和维氏硬度压痕测试结果可以看出, 纳米线通过抑制微裂纹的产生和在微裂纹之间发生桥联来抑制早期损伤的发展。此外, 在纳米线表面沉积一层氮化硼界面相, 纳米线与基体之间的结合力变弱, 复合材料对微裂纹的抑制和偏转得到进一步增强, 弯曲性能大幅提升。  相似文献   

4.
Three-dimensional (3D) silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites, employing KD-1 SiC fibers (from National University of Defense Technology, China) as reinforcements, were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and properties of the as prepared SiCf/SiC composites were studied. The results show that the density and open porosity of the as prepared SiCf/SiC composites are 2.1 g/cm3 and 7.7%, respectively. The SiC fibers are not severely damaged during the VSI process. And the SiC fibers adhere to the matrix with a weak interface, therefore the SiCf/SiC composites exhibit non-catastrophic failure behavior with the flexural strength of 270 MPa, fracture toughness of 11.4 MPa·m1/2 and shear strength of 25.7 MPa at ambient conditions. Moreover, the flexural strength decreases sharply at the temperature higher than 1200 °C. In addition, the thermal conductivity is 10.6 W/mk at room temperature.  相似文献   

5.
Loading rate dependence of mechanical properties of SiC fibre-reinforced SiC composites (SiCf/SiCm) has been experimentally investigated as to the fibre volume fraction and coating materials for SiC fibre. The composites consisting of monolithic SiC and SiC fibre (Hi-Nicalon) coated with Boron-Nitride (BN) or Carbon (C) with fibre volume fractions of 20, 30 and 40% were fabricated by polymer infiltration–pyrolysis (PIP) process. The stress–strain response and strength were measured in tension over a wide range of strain rate,10−4∼200 s−1. It was shown that the higher volume fraction, the larger tensile strength regardless of the kind of coating and strain rate. The interface friction stress evaluated by the fibre pullout length that is measured through microscopic observations of fractured specimens is larger in dynamic loading than in static loading. The BN-coated fibre gave the composite superior tensile strength to the C-coated fibre. This trend results from the variety of the interface friction stress associated with the coating thickness.  相似文献   

6.
Nicalon SiC and Hi-Nicalon SiC fibre oxynitride glass and glass–ceramic composites were prepared and the interface between the fibres and matrix characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) spectroscopy. It was found that the formation and thicknesses of interfacial layers were primarily determined by the type of fibre reinforcement, but the role of these interfaces in influencing composite properties was dependent on the thermal properties of the matrix. For Nicalon SiC composites, the carbon-rich layer did not promote fibre debonding and toughening unless the matrix had a smaller thermal expansion coefficient than the fibres. For Hi-Nicalon SiC composites, the absence of oxygen in the fibre significantly encouraged chemical reaction between fibre and matrix, resulting in no strengthening or toughening. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
采用先驱体浸渍裂解工艺制备无界面、SiC、PyC和PyC/SiC等界面相SiC/SiC复合材料, 研究了SiC/SiC复合材料的微观结构及静态力学性能, 并通过强迫振动法系统分析了界面相对复合材料内耗行为的影响。研究结果表明, 引入界面相有效改善了复合材料的微观结构及力学性能, 并降低了复合材料的内耗。其中, PyC/SiC复相界面中亚层SiC限制了PyC界面相与纤维的结合及塑性形变, 提高了复合材料的力学性能; 同时, 界面相对SiC/SiC复合材料内耗行为有显著影响, 材料内耗水平与界面剪切强度成反比。对比50和350 ℃时的材料内耗变化率发现, 随界面剪切强度增大, 材料内耗呈降低的趋势, 且含有PyC的PyC/SiC界面复合材料具有较低的内耗变化率, 说明PyC/SiC复相界面的SiC/SiC复合材料更适于高温振动环境。  相似文献   

8.
Three-dimensional 4-directional Cf/ZrC–SiC composites were successfully fabricated by polymer infiltration and pyrolysis combined with ZrC precursor impregnation. The microstructure and mechanical properties of the composites were studied. The composite with PyC/SiC interphase had a bulk density of 2.14 g/cm3, an open porosity of 10%, and a bending stress of 474 MPa, and exhibited a non-brittle failure behavior due to propagation and deflection of cracks, and fracture and pullout of fibers. Their high-temperature oxidation resistance and anti-ablation properties were evaluated using a muffle furnace and plasma wind tunnel test. Results show that the composites have good mechanical and excellent ablative properties.  相似文献   

9.
Polymer derived silicon carbide (SiC) interphase was introduced by precursor infiltration and pyrolysis (PIP) to prevent carbon fiber erosion and to improve the fiber–matrix interface bonding of C/ZrC composites prepared by PIP. Introducing SiC interphase increased the density of the composites. The SiC interphase not only protected carbon fibers effectively from erosion by carbo-thermal reduction, but also enhanced the mechanical properties of C/ZrC composites by strengthening the interface bond. The flexural strength and fracture toughness of C/ZrC composites with SiC interphase prepared by two PIP cycles were 319 MPa and 18.8 MPa m1/2 respectively. The ablation properties of C/ZrC composites were with rising content of SiC interphase but then decreased when excessive. The mass loss rate and the linear recession rate of the C/ZrC composites with SiC interphase prepared by one PIP cycle were 0.0079 g/s and 0.0084 mm/s, respectively.  相似文献   

10.
SiC was infiltrated in two-dimensionally woven Tyranno/SiC particulate preforms from SiCl4–CH4–H2 using pressure-pulsed chemical vapour infiltration (PCVI) in the temperature range 1348–1423 K. Above 1373 K, only β-SiC was deposited, whereas, at 1348 K, Si codeposition was found. At 1423 K, a macrosurface film was formed in the early stage of PCVI. At 1373 K, residual porosity decreased from 30% to 7.5% irrespective of the sample size. Three point flexural strength increased with decreasing residual porosity and increasing fibre volume fraction in the sample. Flexural strength of the sample having 48% fibre volume fraction reached about 325 MPa after 5 × 104 pulses of CVI at 1373 K. Inter-laminar shear strength of the sample obtained at 1373 K reached 40 MPa at 7 × 104 pulses. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
A processing route for ceramic matrix composites is developed based uponpolymer pyrolysis. Three types of NicalonTM fiber woven fabrics,—i.e., uncoated, carbon-coated, and carbon/SiC-coated—are impregnated with apolysilazane solution. Thus-formed prepregs are then cut, laminated,pressed and fired to 1000 °C in a nitrogen atmosphere. Upon pyrolysis,polysilazane converts to a Si3N4-based ceramic matrix with 60 wt% yield. The composites made with uncoated NicalonTM fibers have poor flexural andtensile strength (103 and 19 MPa, respectively) and show brittle fracturebehavior. That is due not only to the poor fiber-matrix interface but alsoto processing-induced fiber damage. For carbon and carbon/SiC-coatedNicalonTM fiber composites, the coating layers on the fiber surfacemanipulate the appropriate fiber-matrix interface and also protect thefibers from damage during polymer pyrolysis, so these composites exhibithigher flexural (250 and 274 MPa, respectively) and tensile (138 and 196 MPa, respectively) strength. Also, the load stress-deflection behavior ofcomposites with two types of coated fibers cause noncatastrophic fracture.  相似文献   

12.
Abstract

Oxidation occurs at two levels in a fiber-reinforced composite, the more pernicious form being “internal oxidation”. In SiC/SiC composites a compliant interphase layer of carbon or boron nitride permeates the entire structure, and can serve as conduit for deep ingress of ambient oxidants. Because such insidious (“pest”) attack is not amenable to the usual analysis by measurement of weight change or oxide thickness, it thwarts efforts at routine prediction of service life. However, it leaves its signature in the microstructure. Hence, microscopy provides a useful tool for assessing pest degradation in SiC/SiC composites. This paper summarizes our studies on the Hi-Nicalon/BN/SiC composite, in which various microscopy tools were used to reveal features and disclose mechanisms behind the catastrophic degradation of this material in a burner rig.  相似文献   

13.
Al/SiC composites with volume fractions of SiC between 0.55 and 0.71 were made from identical tapped and vibrated powder preforms by squeeze casting (SC) and by two different setups for gas pressure infiltration (GPI), one that allows short (1–2 min) liquid metal/ceramic contact time (fast GPI) and the other that operates with rather long contact time, i.e., 10–15 min, (slow GPI). Increased liquid metal–ceramic contact time is shown to be the key parameter for the resulting thermal and electrical conductivity in the Al/SiC composites for a given preform. While for the squeeze cast samples neither dissolution of the SiC nor formation of Al4C3 was observed, the gas pressure assisted infiltration led inevitably to a reduced electrical and thermal conductivity of the matrix due to partial decomposition of SiC leading to Si in the matrix. Concomitantly, formation of Al4C3 at the interface was observed in both sets of gas pressure infiltrated samples. Longer contact times lead to much higher levels of Si in the matrix and to more Al4C3 formation at the interface. The difference in thermal conductivity between the SC samples and the fast GPI samples could be rationalized by the reduced matrix thermal conductivity only. On the other hand, in order to rationalize the thermal conductivity of the slow GPI a reduction in the metal/ceramic interface thermal conductance due to excessive Al4C3-formation had to be invoked. The CTE of the composites generally tended to decrease with increasing volume fraction of SiC except for the samples in which a large expansive drift was observed during the CTE measurement by thermal cycles. Such drift was essentially observed in the SC samples with high volume fraction of SiC while it was much smaller for the GPI samples.  相似文献   

14.
利用三维编织炭纤维预制件通过先驱体浸渍裂解法制备C/SiC复合材料。研究了热解碳(PyC)/SiC界面相对复合材料的微观结构和力学性能的影响。弯曲性能通过三点弯曲法测试,复合材料的断口和抛光面通过扫描电镜观察。结果表明:通过等温化学气相沉积法在纤维表面沉积PyC/SiC界面相以后,复合材料的三点抗弯强度从46MPa提高到247MPa。沉积界面的复合材料断口有明显的纤维拔出现象,纤维与基体之间的结合强度适当,起到了增韧作用;而未沉积界面相复合材料的断口光滑、平整,几乎没有纤维拔出,纤维在热解过程中受到严重的化学损伤,性能下降严重,材料表现为典型的脆性断裂。  相似文献   

15.
采用化学气相渗透(CVI)工艺, 在SiC纤维表面沉积BN和BN/SiC复合界面层, 对沉积界面层前后纤维的力学性能进行了评价。采用聚合物浸渍裂解(PIP)工艺进行致密化, 制得以原纤维、BN界面层和BN/SiC界面层纤维增强的三种Mini-SiCf/SiC复合材料, 研究其微观结构和拉伸性能。结果表明: 采用CVI工艺制得的界面层厚度均匀、结构致密, 其中BN界面层中存在六方相, 晶体尺寸为1.76 nm; SiC界面层结晶性较好, 晶粒尺寸为18.73 nm; 沉积界面层后SiC纤维的弹性模量基本保持不变, 拉伸强度降低。与SiCf/SiC相比, PIP工艺制备的SiCf/BN/SiC和SiCf/(BN/SiC)/SiC-Mini复合材料所能承受的最大拉伸载荷和断裂应变明显提升, BN界面层起主要作用。由断面形貌分析可以看出, SiCf/BN/SiC和SiCf/(BN/SiC)/SiC复合材料的纤维拔出明显, 说明在断裂时消耗的能量增加, 可承受的最大载荷增大。  相似文献   

16.
Three-dimensional (3D) KD-1 silicon carbide fiber reinforced silicon carbide matrix (KD-1 SiCf/SiC) composites were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and mechanical properties of the resulting KD-1 SiCf/SiC composites were studied. The results show that the resulting SiCf/SiC composites have high bulk density and low open porosity (<6%). The mechanical properties of the resulting SiCf/SiC composites firstly increase and then decrease with decreasing the open porosity of the SiCf/C composites. The KD-1 SiC fibers were not severely deformed and adhered to the matrix with a weak interface during the VSI process. As a result, the composites exhibit non-catastrophic failure behavior. Additionally, the diffusion mechanism for the VSI process was also investigated in our work.  相似文献   

17.
The mechanical behaviour at room temperature and the lifetime in air at 700°C under static loading of SiC/BN/SiC minicomposites have been investigated. The minicomposites consisted of a single tow of Hi-Nicalon fibres coated with a BN interphase and a CVI-SiC matrix. For few of them, a BN layer was introduced within the matrix. All the minicomposites were heat treated at high temperature to improve the BN crystallinity. In some cases, the BN interphase was submitted to a specific treatment before the infiltration of the SiC matrix, to further improve its crystalline state. The differences in interfacial zone, as assessed by TEM, were correlated with those in mechanical properties. A significant improvement of the mechanical behaviour at room temperature and the lifetime of the minicomposites with a multilayered matrix was observed. The multilayered matrix is efficient when a silica layer on both sides of the BN layer within the matrix is present.  相似文献   

18.
Three-dimensional (3D) silicon carbide (SiC) matrix composites reinforced with KD-I SiC fibres were fabricated by precursor impregnation and pyrolysis (PIP) process. The fibre-matrix interfaces were tailored by pre-coating the as-received KD-I SiC fibres with PyC layers of different thicknesses or a layer of SiC. Interfacial characteristics and their effects on the composite mechanical properties were evaluated. The results indicate that the composite reinforced with as-received fibre possessed an interfacial shear strength of 72.1 MPa while the composite reinforced with SiC layer coated fibres had a much higher interfacial shear strength of 135.2 MPa. However, both composites showed inferior flexural strength and fracture toughness. With optimised PyC coating thickness, the interface coating led to much improved mechanical properties, i.e. a flexural strength of 420.6 MPa was achieved when the interlayer thickness is 0.1 μm, and a fracture toughness of 23.1 MPa m1/2 was obtained for the interlayer thickness of 0.53 μm. In addition, the composites prepared by the PIP process exhibited superior mechanical properties over the composites prepared by the chemical vapour infiltration and vapour silicon infiltration (CVI-VSI) process.  相似文献   

19.
Si3N4 matrix composite was fabricated by hot pressing with 20% SiC whiskers coated with polycarbosilane (PCS). The preceramic polymer on the whiskers was pyrolysed during sintering to form a carbon-rich layer at the whisker/matrix interface. Mechanical properties were measured, and compared to those of the composites with whiskers purified with HCl and HF. Elastic modulus and bending strength of the composite with PCS-coated whiskers were lower than those of the composites with other whiskers. Fracture toughness was measured by single-edge notched beam (SENB) and single-edge precracked beam (SEPB) methods. The toughness, including crack-growth resistance measured by the SEPB method, increased from 7.2 MPam1/2 to 7.9 MPam1/2 by PCS-coating on the whisker, while the toughness measured by the SENB method decreased from 6.5 MPam1/2 to 5.7 MPam1/2. The layer derived from PCS facilitated debonding at the whisker/matrix interface and activated the wake-toughening. Optical microscopic observation of the crack propagation near the interface confirmed enhancement of interfacial debonding by the PCS-coating.  相似文献   

20.
Abstract

Two-dimensional SiC fibre reinforced SiC ceramic matrix composites (SiCf/SiC) were fabricated by vacuum infiltration and hot pressing using a 200 nm thick pyrolytic carbon coated Tyranno SA3 fabric and 50 nm sized β-SiC powder. Hot pressing was carried out at 1750°C for 3 h in an Ar atmosphere under a pressure of 20 MPa. Al2O3–Y2O3–MgO sintering additive (10 wt-%) and polyvinyl butyral resin (45 wt-%) with respect to the matrix SiC were found to be the optimum contents for the high density composite. Vacuum infiltration with a force gradient produced much higher amount of slurry infiltration than simple dipping. Much improved density of 3·02 g cm?3, compared to the previous reports, was achieved for the SiC–SiCf containing approximately 67 vol.-% of fibre. This composite showed a step increase with a stress–displacement behaviour during the three-point bending test due to the fibre reinforcement. The displacement for failure and flexural strength were 0·58 mm and 342 MPa respectively, which were much larger than those for monolithic SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号