首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
基于ANSYS研究压电陶瓷(PZT-5H)的振动模态,结合谐响应算法得出压电陶瓷3个不同区域的应变-频率曲线,并将压电陶瓷和混凝土单元耦合,实现了压电埋入式混凝土机敏模块的电-声系统声压云图仿真,得到了不同激励频率下的最大声压和声场分布。结果表明压电陶瓷在20 kHz~100 kHz频段内有4个振幅极大值频率点,随着谐振频率的增加,振幅逐渐增加,而振动分布呈先集中后分散的变化趋势;通过谐响应分析发现压电陶瓷声辐射面不同区域最大应变频率均在80kHz附近;由电-声系统的声场分析发现压电陶瓷的激励频率为79.666 kHz时声压最大、声场分布最优、声指向性集中。  相似文献   

2.
为了有效解决无线传感器网络节点的供电难题,提出之字形结构的微型压电式能量收集器。相比于传统的直悬臂梁,此结构等效加大了压电梁的长度,降低了系统的固有振动频率。建立了之字形压电梁的本构方程和受迫振动方程,推导得到其输出电压的频域表达式。基于之字形压电梁的结构,利用ANSYS软件对其进行了谐响应分析。仿真结果表明,压电梁的输出电压在各阶固有振动频率处存在极值,符合理论分析的结果;输出电压大小随压电梁长度增加而降低,随压电梁宽度增加而升高,但均为非线性关系;压电梁末端质量块的长度和厚度、基体层厚度减小时,会导致输出电压的增大。在论文中所提出的结构尺寸下,10根直梁构成的之字形结构压电梁,在其一阶固有振动频率处,输出电压可达10 V以上,符合无线传感器网络节点的实际供电需求,证明了之字形压电梁结构的有效性。  相似文献   

3.
近年来,随着微能源的发展,微型压电振动能量收集器得到了广泛关注,但传统d31模式PZT薄膜微型压电振动能量收集器输出电压普遍较低,难以满足应用需求。为提高微型压电振动能量收集器的输出电压,论文提出了共质量块悬臂梁阵列压电振动能量收集器新结构,该结构包含压电悬臂梁单元组成的阵列和一个质量块,悬臂梁阵列共用质量块。采用有限元方法对该结构进行了优化设计,得到压电悬臂梁单元优化尺寸为3 mm×2.4 mm×0.05 mm,硅质量块优化尺寸为8 mm×12.4mm×0.5 mm。设计了MEMS压电阵列振动能量收集器加工工艺流程,加工出原理样件。在1 gn加速度,239.7 Hz谐振频率激励下,测试得到样件输出开路电压有效值为9.16 V;在最优化负载200 kΩ下,负载输出电压有效值为5.51 V,输出功率为151.8μW。  相似文献   

4.
基于非线性技术改善能量采集器的能量采集效果作用,本文研究了非线性磁力耦合的双悬臂梁压电振动能量采集器,该采集器由两条不同的固有频率悬臂梁与永磁体组成.本文给出双梁磁力耦合压电能量采集器模型并建立了动力学方程式,通过实验测试获取相关参数与拟合磁力公式,数值仿真分析了双梁固有频率比1∶1.2与1∶1.5和永磁体初始间距40mm与30mm的4种结构能量采集器的电压输出性能与频率特征.根据数值分析设计实验:外激励加速度3m/s2作用下,双梁磁力结构能量采集器比单梁线性结构多一个电压共振峰;双梁固有频率比为1∶1.5比双梁固有频率比1∶1.2的电压响应带宽宽;初始磁距30mm共振峰值分别为(12Hz,39.4V)与(18Hz,13.4V)比初始磁距40mm两电压共振峰高且电压共振峰峰之间的电压输出比其他组合结构高.  相似文献   

5.
考虑到压电自供电装置中压电振子的几何参数直接影响其共振频率,从而影响压电自供电装置的发电量,因此需要根据环境激励频率设定最佳的压电振子的几何参数,对基于压电自供电的采煤机状态无线监测装置进行研究,通过理论分析、仿真以及实验方法对对不同悬臂梁结构在不同外界激励作用下的发电量进行研究.研究结果表明:悬臂梁自由端的质量块质量以及悬臂梁长度越大,悬臂梁压电结构的固有频率越低;随着悬臂梁厚度的增加,悬臂梁压电结构的固有频率逐渐增大.以此为依据对采煤机不同监测位置的装置选取最佳匹配的压电结构几何参数,并通过采煤机工作状态监测实验验证了本文研究的压电自供电无线监测装置的可行性.  相似文献   

6.
考虑到压电自供电装置中压电振子的几何参数直接影响其共振频率,从而影响压电自供电装置的发电量,因此需要根据环境激励频率设定最佳的压电振子的几何参数,本文对基于压电自供电的采煤机状态无线监测装置进行研究,通过理论分析、仿真以及实验方法对对不同悬臂梁结构在不同外界激励作用下的发电量进行研究。研究结果表明:悬臂梁自由端质量块质量以及悬臂梁长度越大,悬臂梁压电结构的固有频率越低;随着悬臂梁厚度的增加,悬臂梁压电结构的固有频率逐渐增大。以此为依据对采煤机不同监测位置的装置选取最佳匹配的压电结构几何参数,并通过采煤机工作状态监测实验验证了本文研究的压电自供电无线监测装置的可行性。  相似文献   

7.
考虑到目前用于采煤机状态监测的压电俘能装置不能实时根据外界激励频率变化而改变固有频率,研究一种自适应外界激励频率的采煤机状态压电俘能监测装置.对该频率可调的压电俘能装置进行数学模型建立、固有频率的有限元仿真以及实验研究.研究结果表明:随着压电俘能装置悬臂梁重心的变化,压电俘能装置发电量最大值对应的激励频率不断变化.自适应外界激励频率的压电俘能装置可将频率变化范围控制在7 Hz到55 Hz之间.自适应外界激励频率的压电俘能装置可使安装于采煤机各处的压电俘能装置输出功率在300 mW左右.自适应外界激励频率的压电俘能装置能够对采煤机工作时不同位置的激励频率进行自适应调节,保持对监测装置稳定供电.  相似文献   

8.
骆懿 《传感技术学报》2020,33(2):200-206
提出了一种利用静电纺丝工艺制备P(VDF-TRFE)/石墨烯(Graphene,以下简称GR)复合纳米纤维薄膜的方法并对其压电性能进行了研究。首先,以复合薄膜为功能层设计并制备了柔性压电纳米发电机。使用扫描电镜(SEM)表征了复合纤维薄膜表面的微观形貌。其次,对各纳米发电机样品进行了压电响应对比实验,含0.2%石墨烯的P(VDF-TRFE)/GR纳米发电机的开路输出电压、短路输出电流峰值分别为12.3 V、1.41 μA,比纯P(VDF-TRFE)样品分别增加了大约2.0倍、2.2倍。此外,通过理论分析和周期激振测试探究了纳米发电机电响应输出的影响因素和规律,证实在激振器驱动信号150 mV^300 mV振幅、10 Hz^30 Hz频率的范围内,其开路输出电压随着其振幅和振动频率增大而增大,电容充电效率随其振幅增大而增大。  相似文献   

9.
本文对压电梁、板结构振动主动控制进行了研究,分别建立了压电悬臂梁的耦合动力学方程以及Kirchhoff假设下矩形压电薄板的耦合动力学方程,通过采用独立模态空间控制法,实现了对压电智能结构前两阶模态的主动振动控制.为提高主动控制的抑振效果,通过仿真实例分析了压电执行器在梁上的不同布局对于主动控制抑振效果的影响,得到了压电执行器粘附于悬臂梁上的最佳布局.最后实验验证了压电悬臂梁在自由振动以及模态共振下压电执行器对于悬臂梁响应控制的可行性和有效性.  相似文献   

10.
随着物联网的发展,多节点的传感器供电成为关键问题,由于环境中普遍存在低频振动,采用了压电悬臂梁结构,建立压电悬臂梁结构的电学模型,并进行了ANSYS的仿真,仿真得到电压76 V,约等于模型的理论值,验证了模型的正确性。进而继续研究了压电悬臂梁几何尺寸对固有频率的影响,振子越长,质量块越长,频率越低。从而收集低频振动环境中的能量,为传感器供电装置提供了设计的理论依据。  相似文献   

11.
针对压电能量收集装置在进行能量收集时具有固有频率高、能量收集效率低等问题,设计了一种变截面压电能量收集装置,并对压电振子进行了理论建模和有限元特性分析。根据分析结果,在相同的条件下,变截面悬臂梁的固有频率比等截面悬臂梁低。同时,变截面悬臂梁在截面厚度等于0. 4 mm时,电压输出最大,可达23. 77 V;变截面悬臂梁比等截面悬臂梁具有频带宽、输出电压高,并具有比等截面悬臂梁质量轻的优点。从而对环境中低频振动的能量进行收集时,为传感器的供电装置提供了理论的设计依据。  相似文献   

12.
以PDMS为柔性基底设计的PVDF压电薄膜新型压电能量收集器压电性能良好,柔韧性强,可适应复杂的振动环境,具有广阔的应用前景.首先设计了具有柔性基底的压电能量收集器的结构;其次,用PVDF颗粒采用静电纺丝法制备了PVDF压电薄膜;最后,实验表明设计的压电能量收集器在振动频率为25 Hz,振动幅度为2 mm的激励下,开路输出峰值电压为8.38 V,输出功率密度为6.32 μW/cm2;经Ansys有限元分析,发现增大激励源的振动幅度,可以提高压电能量收集器的开路输出电压和输出功率.  相似文献   

13.
为了实现多向风能的采集,提出一种基于压电圆管和末端钝体的驰振风能采集器。通过多物理场耦合仿真分析了采集器模态以及压电圆管输出性能与振动频率、电阻及激振力的关系;模态及输出特性仿真结果显示,方柱钝体采集器的一阶和二阶固有频率均为14.26 Hz,工作在固有频率附近时可获得较高输出;存在最优负载电阻,为3.16 MΩ;压电圆管输出电压随激振力的增加而增加。方柱钝体的二维流场仿真结果显示,在各角度下,方柱结构均能受到相应横向气动力作用,实现多向风能的转换。三维流固耦合仿真分析结果显示,由于圆柱梁的对称特性,采集器受到二维平面不同方向风作用时均能产生振荡,验证了采集器的多向性能。  相似文献   

14.
某型航空发动机转子叶片静频测量系统   总被引:1,自引:1,他引:1  
对某型航空发动机转子叶片一阶固有频率的测量方法进行了研究。采用脉冲激励法对叶片进行激振,通过计算机采集叶片在该激励下的振动响应信号,并对响应信号进行功率谱分析获得叶片一阶固有频率。通过阻尼系数的计算来修正所测出的固有频率,消除阻尼对于频率测量的影响,提高了系统测量的准确性。与传统的共振法相比,系统具有设备简单、测试速度快、精度高的特点。  相似文献   

15.
在整体尺寸不变的基础上,结合集总参数模型,利用ANSYS有限元软件对氮化铝(AlN)压电振动能量收集器的结构参数进行优化设计,得到压电悬臂梁单元的优化尺寸为5mm×12mm×0.05mm.设计了工艺流程,加工了原理样机.经测试:在1gn加速度,204.6 Hz谐振频率激励下,样机在最优化负载80 kΩ下的输出电压为2.3V,输出功率为66.125μW,满足部分低功耗传感节点的供能要求.  相似文献   

16.
某舵机伺服阀衔铁反馈杆组件谐响应分析   总被引:1,自引:0,他引:1  
张颖  袁朝辉  赵开宇 《测控技术》2013,32(9):154-158
对某舵机上射流管电液伺服阀的衔铁及反馈杆组件的工作原理及固有频率进行理论分析,并采用有限元流体仿真软件Workbench中的流体模块Fluent (CFX)分析油液在工作中对反馈杆的阻尼作用,以获得较为真实的阻尼系数,并采用模态分析及谐响应分析模块对衔铁及反馈杆组件进行模态分析得到相关点的固有频率和相应振型,并进行谐响应分析,获得关键点的谐响应曲线.仿真结果表明,该电液伺服阀反馈杆末端在1050 Hz时出现最大振幅,衔铁在1950 Hz处出现最大振幅,为了防止共振对伺服阀工作性能的影响,应在工作中尽量避免这两个频率附近的压力脉冲信号.  相似文献   

17.
高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(Sol-Gel)技术在每个悬臂梁上异质集成制备锆钛酸铅(Pb(Zr0.53Ti0.47)O3,PZT)压电功能厚膜层,通过MEMS工艺和引线键合技术完成器件础结构制造。输出性能测试结果表明,器件一阶谐振频率为41 Hz,3 gn加速度激励下输出电压峰峰值为264.00 mV;在器件两端加载3.00 MΩ负载时输出功率最大,为0.72 nW。  相似文献   

18.
针对结合弹支-刚性转子系统的动力学特点,利用Lagrange能量法建立了考虑变速特性的转子系统瞬态响应动力学方程,模型中区别考虑了非旋转阻尼和旋转阻尼的影响.采用精细积分算法计算获得过临界区的转子瞬态响应特性,进一步对比分析了角加速度和阻尼特性对转子系统瞬态振动响应幅频特性和相频特性的影响规律.研究结果表明:变转速引起系统的刚度矩阵变化并产生附件的激励力;瞬态过共振响应幅值明显小于稳态响应幅值,且过共振越快速、阻尼越大时系统瞬态振动响应幅值越小.针对过瞬态相频特性,在临界转速附近出现一个新的相位角(加速过共振小于90°),此相位不受角加速度值和旋转阻尼比的影响,但随着非旋转阻尼比的增大呈增大趋势.  相似文献   

19.
为了降低环境振动压电能量收集器(PVEH)的固有频率(ωn),提高PVEH的输出性能,笔者提出了一种压电式变截面悬臂梁低频振动能量收集器(VCL—PVEH)。基于压电方程建立了不同压电材料分布的VCL—PVEH数值模型,优化了压电材料分布位置。研制了PVCL—PVEH原理样机,搭建样机实验平台。结果表明:当压电材料靠近悬臂梁固支端时,器件输出电压(V)和功率(P)最大;随着压电材料与固支端距离(D)增大,器件ωn降低。在相同压电材料面积下,三角形VCL—PVEH的ωn 最低(ωn = 25.7 Hz)、V最大(V = 100 V)。实验和计算表明,随负载阻抗(R)增大,P先增大后减小,存在最优R为25000 Ω,此时,P为240 mW,可直接点亮21只商用LED,满足低功耗农业物联网传感器供电的要求。  相似文献   

20.
以单晶悬臂梁压电发电装置为研究对象,在考虑压电材料非线性的情况下,利用广义Hamilton原理、Rayleigh-Ritz法、Euler-Bernoulli梁理论及压电元件恒定电场假设建立了悬臂梁压电发电装置的分布式机电耦合模型,通过数值计算分析谐振频率附近解的特性与系统参数及初始条件的关系,揭示了压电材料非线性、外激励参数对系统响应的影响规律,并通过实验验证了解析解的正确性.结果表明,压电材料的非线性特性会导致近似解的共振峰向左偏移,呈现软特性的非线性特征;当激励频率变化时,系统响应存在多解、跳跃等现象,主共振解的真正实现与初始条件的选取有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号