共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence. 相似文献
2.
Salvatore Milli Marco Mancini Massimiliano Moscatelli Francesco Stigliano Mattia Marini Gian Paolo Cavinato 《Sedimentology》2016,63(7):1886-1928
The Late Pleistocene/Holocene Tiber delta succession represents the most recent and one of the best preserved, high‐frequency/low‐rank depositional sequences developed along the Latium continental margin of the Italian peninsula. Several previous studies have established a robust data set from which it has been possible to describe the stratigraphic architecture of the entire Tiber depositional sequence from the landward to seaward sectors and over a distance of 60 km. The Tiber depositional sequence shows many characteristics found in other Late Pleistocene to Holocene deltaic and coastal successions of the Mediterranean area. The stratigraphic architecture of the Tiber depositional sequence is controlled mainly by glacioeustasy, although factors such as tectonic uplift, volcanism and subsidence, exert an influence at a local scale. The resulting depositional model allowed discussion of some important points such as: (1) the genesis of the Tiber mixed bedrock‐alluvial valley, extending from the coastal plain to the innermost portion of the shelf, recording (i) multiple episodes of incision during relative sea‐level fall, and (ii) a downstream increase of depth and width of the valley during the base‐level fall and the subsequent base‐level rise; (2) the different physical expression of the Tiber depositional sequence boundary from landward to seaward, and its diachronous and composite character; (3) the maximum depth reached by the Tiber early lowstand delta at the end of the sea‐level fall is estimated at ca 90 m below the present sea‐level and not at 120 m as suggested by previous works; (4) the backward position of the Tiber late lowstand delta relative to the deposit of early lowstand; (5) the change of the channel pattern and of the stacking pattern of fluvial deposits within the Lowstand Systems Tract, Transgressive Systems Tract and Highstand Systems Tract. All of these features indicate that the Late Pleistocene/Holocene Tiber delta succession, even if deposited in a short period of time from a geological point of view, represents the result of the close interaction among many autogenic and allogenic factors. However, global eustatic variations and sediment supply under the control of climatic changes can be considered the main factors responsible for the stratigraphic architecture of this sedimentary succession, which has been heavily modified by human activity only in the last 3000 years. 相似文献
3.
《Sedimentology》2018,65(4):1132-1169
Clinoform surfaces are routinely used to mark transitions from shallow waters to deep basins. This concept represents a valuable tool for screening potential reservoir intervals in frontier basins where limited data are available. Variations in the character of clinoform geometries and shoreline and shelf‐edge trajectories are indicators of a range of different factors, such as palaeobathymetry, changes in relative sea‐level and sediment supply. Applications of conceptual and generalized models might, however, lead to erroneous assumptions about the supply of coarse‐grained material to the delta front and basin when superficial similarities between clinoform geometries are not treated holistically. The present study examines the mudstone‐dominated Middle Triassic Kobbe Formation – a potential hydrocarbon reservoir interval in the Barents Sea, where prodeltaic to deltaic deposits can be examined in cores, well logs and two‐dimensional and three‐dimensional seismic data. Despite pronounced acoustic impedance contrast to the surrounding shale, channel belt networks are not observed close to the platform edge in seismic datasets, even at maximum regressive stages. However, sub‐seismic prodeltaic deposits observed on the shallow platform indicate that prodeltaic deposits were sourced directly from the delta plain. Clinoform surfaces with different geometries and scale are observed basinward of the palaeoplatform edge of underlying progradational sequences, correlative to mudstone‐dominated prodeltaic core sections. Results indicate that platform‐edge deltas developed at discrete sites in the basin due to normal regression, but the positions of these deltas are not directly relatable to variations in clinoform geometries. Transitions from third‐order to fourth‐order clinoform geometries record discrete transgressive–regressive cycles but are not necessarily good indicators of sandstone deposition. Because of prolonged periods with high accommodation, channel avulsions were frequent and only very fine‐grained sandstone was deposited in heterolithic units at the delta front. Sandstones with good reservoir properties are predominantly found along basin margins. 相似文献
4.
扇三角洲相与副层序关系的探讨 总被引:2,自引:1,他引:2
在湖泊中存在三种三角洲类型,即正常三角洲,辫状三角洲和扇三角洲。它们均由三角洲平原、三角洲前缘、前三角洲三部分所组成。陆相地层具有强烈的旋回性,只要将基准面看成海平面就完全可以运用层序地层学思路与方法研究陆相地层。扇三角洲相在断陷湖盆的陡坡一侧发育,通过与标准三角洲副层序模式对比,一个完整的扇三角洲序列可以划分出两个副层序。 相似文献
5.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems. 相似文献
6.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break. 相似文献
7.
The lower Pliocene Belvedere Formation, cropping out in the Crotone Basin, southern Italy, exhibits a metre‐scale to decametre‐scale shallow‐marine cyclicity that shares features of both high‐frequency sequences linked to shoreline shifts and controlled by minor relative sea‐level and/or sediment supply changes, and sedimentological cycles unrelated to shoreline shifts. In order to better understand the high‐frequency sequence stratigraphic framework of this succession, an integration of sedimentological, micropalaeontological (micro‐foraminifera assemblages) and mineralogical (heavy mineral abundance) data is used. From a sedimentological/stratigraphic point of view, wave‐ravinement surfaces bounding high‐frequency sequences, and associated substrate‐controlled ichnofacies, are prominent in outcrop and document environmental and water‐depth changes, whereas bedset boundaries separating sedimentological cycles have a more subtle field appearance and are only associated with changes of environmental energy. Moreover, condensed deposits are present only above wave‐ravinement surfaces, and the high‐frequency sequences bounded by these surfaces have a thickness that is an order of magnitude greater than that of the bedsets. Micro‐foraminifera assemblages may change, and the content of heavy minerals usually increases, across wave‐ravinement surfaces, whereas both parameters do not change significantly across bedset boundaries. The abundance of heavy minerals is systematically higher, with respect to the underlying and overlying deposits, in the condensed shell beds that overlie wave‐ravinement surfaces. An integrated sedimentological, micropalaeontological and mineralogical approach represents a powerful tool to discriminate between wave‐ravinement surfaces bounding high‐frequency sequences and bedset boundaries, and in general to investigate at the intra high‐frequency sequence scale. This integrated approach is expected to be very useful in the study of potentially all shallow‐marine successions composed of small‐scale cycles, in order to delineate a detailed sequence stratigraphic framework and understand the factors that controlled the cyclicity. 相似文献
8.
9.
Ang Li Feng Cai Nengyou Wu Qing Li Guijing Yan Yunbao Sun Gang Dong Di Luo 《Geological Journal》2020,55(9):6450-6461
Sedimentological study into the architecture of continental margins reveals its importance in predicting the partition of sediment budget between the shelf and the deep-water settings. The sediment delivery towards the deep-water basin during sea-level lowstands can be hindered along rift margins. Here we use a 2D seismic survey from the northern Okinawa Trough to identify a set of clinoform seismic units elongating along the western slope, where the rifting activity occurred later than the late Pleistocene. The clinoform units are interpreted as a shelf-margin delta complex based on the following observations: (a) the sediments clearly prograde across the eroded paleo-shelf on the dip-oriented sections; (b) there is some negative relief along two extensively traceable reflections, indicating the probable existence of paleo-channels working as the potential pathways of sediment delivery for the shelf-margin deposits; and (c) an eroded surface is easily recognized in the seismic data, possibly marking the sea-level lowstand during which the shelf-margin delta formed. The oxygen isotopes of the core QZ01 are taken as a proxy for the variation of the relative sea level and indicate its fast fluctuation in the past 180 kyr. We interpret how the shelf-margin delta evolved during the late Pleistocene and propose that the subsidence and the rift faulting lead to the starvation of sediments near the shelf edge. As a result, there could be more sediments depositing along the active rift margin, while few of them would be transported to the deep-water basin and re-deposit as turbidites. 相似文献
10.
11.
The Campanian Cliff House Formation represents a series of individually progradational shoreface tongues preserved in an overall landward-stepping system. In the Mancos Canyon area, the formation consists of four, 50- to 55-m-thick and 10- to 20-km-wide sandstone tongues, which pinch out landwards into lower coastal plain and lagoonal deposits of the Upper Menefee Formation and seawards into offshore shales of the Lewis Shale Formation. Photogrammetric mapping of lithofacies along the steep and well-exposed canyon walls was combined with sedimentary facies analysis and mapping of the detailed facies architecture. Two major facies associations have been identified, one comprising the mostly muddy and organic-rich facies of lagoonal and lower coastal plain origin and one comprising the sandstone-dominated facies of shoreface origin. Key stratigraphic surfaces were identified by combining the mapped geometry of the lithofacies units with the interpretation of depositional processes. The stratigraphic surfaces (master ravinement surface, shoreface/coastal plain contact, transgressive surface, maximum flooding surface and the sequence boundary) allow each major sandstone tongue to be divided into a simple sequence, consisting of a basal transgressive system tract (TST) overlain by a highstand system tract (HST). Within each sandstone tongue, a higher frequency cyclicity is evident. The high-frequency cycles show a complex stacking pattern development and are commonly truncated in the downdip direction by surfaces of regressive marine erosion. The complexities of the Cliff House sandstone tongues are believed to reflect changes in the rate of sea-level rise combined with the responses of the depositional system to these changes. Synsedimentary compaction, causing a thickness increase in the sandstone tongues above intervals of previously uncompacted lagoonal/coastal plain sediments, also played a role. This study of the facies architecture, geometry and sequence stratigraphy of the Cliff House Formation highlights the fact that there may be some problems in applying conventional sequence stratigraphical methods to landward-stepping systems in general. These difficulties stem from the fact that no single stratigraphic surface can easily be identified and followed from the non-marine to the fully marine realm (i.e. from the landward to the basinward pinch-out of the sandstone tongues). In addition, the effects of synsedimentary compaction and changes in the shoreface dynamics are not easily recognized in limited data sets such as from the subsurface. 相似文献
12.
根据岩性组合变化、测井曲线叠加样式及地震反射特征,将东营三角洲沙三中亚段划分为八个期次,准层序组PS8~PS1,各期次间沉积小型湖泛泥岩楔。结合岩心及测录井沉积相分析,认为研究区发育三角洲—重力流—湖泊沉积体系。东南部主要发育三角洲分流河道、河口坝、席状砂,西北部发育与三角洲前缘滑塌相伴生的坡移堆积体、滑塌浊积岩和远源浊积岩。准层序组PS8~PS1,活动三角洲经历了由南至北的迁移演化过程。当波浪与河流能量能够抗衡并往复运动时,形成厚度较大的三角洲楔状体叠加区,沉积席状砂和河口坝砂体。受湖平面变化、构造沉降及沉积物供给速率的影响,湖退体系域早期PS7~PS4重力流砂体含油丰富,而浅水区准层序组界线附近的席状砂和河口坝由于临近具有侧向封堵及局部盖层作用的泥岩楔及沼泽沉积,其含油性也较好。 相似文献
13.
Daniel S. Collins Howard D. Johnson Peter A. Allison Pierre Guilpain Abdul Razak Damit 《Sedimentology》2017,64(5):1203-1235
The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal–deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present‐day Baram Delta Province, suggests a ‘storm‐flood’ depositional model comprising two distinct periods: (i) fair‐weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon‐driven storm periods are characterized by increased wave‐energy and offshore‐directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm precipitation (‘storm‐floods’). The modern equivalent environment has the following characteristics: (i) humid‐tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone‐dominated hinterland; (iv) multiple independent, small to moderate‐sized (102 to 105 km2) drainage basins; (v) predominance of river‐mouth bypassing; and (vi) supply‐dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier‐upward successions (metre to decametre‐scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre‐scale silty laminae; (ii) heterolithic sandstone–mudstone alternations (centimetre to metre‐scale); and (iii) sharp‐based, swaley cross‐stratified sandstone beds and bedsets (metre to decimetre‐scale). Gutter casts (decimetre to metre‐scale) are widespread, they are filled with swaley cross‐stratified sandstone and their long axes are oriented perpendicular to the palaeo‐shoreline. The gutter casts and other associated waning‐flow event beds suggest that erosion and deposition was controlled by high‐energy, offshore‐directed, oscillatory‐dominated, sediment‐laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m Ma−1), in a ‘storm‐flood’‐dominated environment, resulted in a highly efficient and effective offshore‐directed sediment transport system. 相似文献
14.
古水深确定是沉积学分析中难点问题,目前主要依据“标志物—水深”的定性—半定量方法确定,但存在原始样品获取难、预测精度低等诸多问题。该方法依据滨线轨迹迁移规律获取在点物源背景条件下一个三级层序内可容纳空间与沉积物供给速率之间变化关系或定量函数,进而采用回剥法和正演法相结合获取不同点原始沉积物厚度和相应的可容空间,其中回剥法获取每个单元原始沉积厚度,正演法获取每个单元随沉积物覆盖后顶层可容空间增量。三角洲平原区为补偿区,其原始沉积物厚度等于可容纳空间增量,三角洲前缘区为欠补偿区,其水深等于可容空间增量与原始沉积物厚度之差。这一新方法不仅考虑到不同点构造沉降差异,而且还考虑了三级层序内沉积物供给速率的变化趋势,因而,较为准确地预测三角洲区的古水深变化。该方法成功地应用于东营地区三角洲沉积区水深变化,该区沙三中(Es3-2)共发育9期进积体,最大水深为180 m,出现于t3时刻。该方法揭示了9期三角洲朵体发育时期水深变化,为该区沉积体空间展布预测提供了有效的定量预测方法。 相似文献
15.
The concurrent development of a cool-carbonate Miocene clinoform system and the tropical reef which developed on its shelf in the North Carnarvon Basin is studied. The study, based on seismic interpretation and geometrical analysis, seeks to investigate how the architecture of the clinoforms develops in relation to the advance of the reef-margin, providing a proxy for discussing contemporaneous shoreline versus shelf-edge development. The progradation of the reef and shelf-edge often display a closely mirrored development, although the reef twice advances an order of two to three times the concurrent advance of the shelf-edge. The forced regression of the second advance, as compared to the normal regression during the first, is observed in proportionally higher input of sediment towards advance of the shelf-edge and toe, along with a gentler slope. The inability of the shelf-edge to keep pace with the reef-margin (and by proxy the shoreline) during lower accommodation/sedimentation is a result of the increased volume of sediment required to match reef-margin advance beyond the shelf-edge. Increased accommodation/sedimentation ratios promote higher trajectories where the volumes on shelf and slope are more balanced and the development more closely matched. The observed matched development of reef and shelf-edge during both limited and increased slope sedimentation, suggest that accommodation is the dominant control on the location and trajectory of both ‘shoreline’ and shelf-edge, and that excess sediment is deposited along the slope. 相似文献
16.
充分利用济阳坳陷东营凹陷北部胜坨油田二区取芯资料全、井网密的优势,按照叠置河口坝、单一河口坝以及前积体的顺序进行层次分析,对河口坝沉积规模进行了定量研究,提出了一套河口坝构型量化分析的方法。研究认为:本区河口坝构型可以分为5个级次,其中第3和第4级次是构型研究的重点;河口坝的长度与厚度及长度与宽度均呈双对数线性关系;前积体的产状,延伸范围及组合存在多解性,在进行分析时需参照河口坝构型模式以及岩芯分析、测井曲线对比和动态开发特征进行综合研究。 相似文献
17.
WEIGUO LI JANOK P. BHATTACHARYA YIJIE ZHU DANIEL GARZA ERIC BLANKENSHIP 《Sedimentology》2011,58(2):478-507
Delta asymmetry occurs where there is strong wave influence and net longshore transport. Differences in the morphology and facies architecture between updrift and downdrift sides of asymmetric deltas are potentially significant for exploration and exploitation of resources in this class of reservoirs. Although delta asymmetry has been recognized widely from modern wave‐influenced deltaic shorelines, there are few documented examples in the ancient record. Based on an integrated sedimentological and ichnological study, the along‐strike variability and delta asymmetry within a single parasequence (Ps 6) is documented in continuously exposed outcrops of the Cretaceous Ferron Sandstone Member of the Mancos Shale Formation near Hanksville in southern Utah. Two intra‐parasequence discontinuity surfaces are recognized which allow subdivision of the parasequence into three bedsets, marked as Ps 6‐1 to Ps 6‐3. Four facies successions are recognized: (i) wave/storm‐dominated shoreface; (ii) river‐dominated delta front; (iii) wave/storm‐reworked delta front; and (iv) distributary channel and mouth bar. Dips of cross‐strata within distributary‐mouth bars and shorefaces show a strong downdrift (southward) component. Ps 6‐3 predominantly consists of river‐dominated delta‐front deposits, whereas Ps 6‐1 and Ps 6‐2 show an along‐strike facies change with shoreface deposits in the north, passing into heterolithic, river‐dominated delta‐front successions south to south‐eastward, and wave/storm‐reworked delta‐front deposits further to the south‐east. Trace fossil suites correspondingly show distinct along‐strike changes from robust and diverse expressions of the archetypal Cruziana Ichnofacies and Skolithos Ichnofacies, into suites characterized by horizontal, morphologically simple, facies‐crossing ichnogenera, reflecting a more stressed, river‐dominated environment. Further south‐eastward, trace fossil abundance and diversity increase, reflecting a return to archetypal ichnofacies. The overall facies integrated with palaeocurrent data indicate delta asymmetry. The asymmetric delta consists of sandier shoreface deposits on the updrift side and mixed riverine and wave/storm‐reworked deposits on the downdrift side, similar to that observed in the modern examples. However, in contrast to the recent delta asymmetry models, significant paralic, lagoonal and bay‐fill facies are not documented in the downdrift regions of the asymmetric delta. This observation is attributed to a negative palaeoshoreline trajectory during delta progradation and subsequent transgressive erosion. The asymmetric delta was induced by net longshore transport from north to south. The forced regressive nature of the delta precludes significant preservation of topset mud. 相似文献
18.
Facies, geometry and key internal stratigraphic surfaces from eight Cretaceous and Eocene clastic shoreline tongues have been documented. The regressive parts of all the studied tongues represent storm‐wave influenced strandplains, deltas or fan‐deltas, and the regressive shoreline trajectories varied from descending to ascending. The transgressive parts of the tongues are dominated by either estuarine or coastal‐plain deposits. The distance from the coeval, up‐dip non‐marine deposits to the basinward pinchout of amalgamated shoreface sandstones, measured along depositional dip, is here termed the sand pinchout distance. The study shows that the angle of regressive‐to‐transgressive turnaround (defined by the angle between the regressive and subsequent transgressive shoreline trajectories) and the process regime during turnaround largely control the sand‐pinchout distance. The amount of transgressive erosion can also partly control the pinchout distance, but this parameter was comparable for the different examples presented here. If the type of depositional system at turnaround and the depth of transgressive erosion are constant, small angles of turnaround are associated with large pinchout distances, whereas larger angles of turnaround result in smaller pinchout distances. The model developed allows sand‐pinchout distance to be predicted, using data for the landward parts of shoreline tongues. The dataset also shows that steeply rising (aggrading) shoreline trajectories tend to produce more heterolithic sandstone tongues than those formed by lower‐angle trajectories. 相似文献
19.
Grace I. E. Cosgrove Miquel Poyatos-Moré David R. Lee David M. Hodgson William D. McCaffrey Nigel P. Mountney 《Sedimentology》2020,67(1):431-456
Shelf-margin clinothem successions can archive process interactions at the shelf to slope transition, and their architecture provides constraints on the interplay of factors that control basin-margin evolution. However, detailed textural analysis and facies distributions from shelf to slope transitions remain poorly documented. This study uses quantitative grain-size and sorting data from coeval shelf and slope deposits of a single clinothem that crops out along a 5 km long, dip-parallel transect of the Eocene Sobrarbe Deltaic Complex (Ainsa Basin, south-central Pyrenees, Spain). Systematic sampling of sandstone beds tied to measured sections has captured vertical and basinward changes in sedimentary texture and facies distributions at an intra-clinothem scale. Two types of hyperpycnal flow-related slope deposits, both rich in mica and terrestrial organic matter, are differentiated according to grain size, sorting and bed geometry: (i) sustained hyperpycnal flow deposits, which are physically linked to coarse channelized sediments in the shelf setting and which deposit sand down the complete slope profile; (ii) episodic hyperpycnal flow deposits, which are disconnected from, and incise into, shelf sands and which are associated with sediment bypass of the proximal slope and coarse-grained sand deposition on the medial and distal slope. Both types of hyperpycnites are interbedded with relatively homogenous, organic-free and mica-free, well-sorted, very fine-grained sandstones, which are interpreted to be remobilized from wave-dominated shelf environments; these wave-dominated deposits are found only on the proximal and medial slope. Coarse-grained sediment bypass into the deeper-water slope settings is therefore dominated by episodic hyperpycnal flows, whilst sustained hyperpycnal flows and turbidity currents remobilizing wave-dominated shelf deposits are responsible for the full range of grain sizes in the proximal and medial slope, thus facilitating clinoform progradation. This novel dataset highlights previously undocumented intra-clinothem variability related to updip changes in the shelf process-regime, which is therefore a key factor controlling downdip architecture and resulting sedimentary texture. 相似文献
20.
Sten‐Andreas Grundvåg William Helland‐Hansen Erik P. Johannessen Andreas H. Olsen Stig A. K. Stene 《Sedimentology》2014,61(7):2172-2204
Deltas are commonly classified according to their plan‐view morphology as either river‐dominated, tide‐dominated or wave‐dominated. However, most deltas form under the mixed influence of these processes, commonly with laterally varying process regimes. It has also become clear that there is a mismatch between the plan‐view morphology and internal facies composition in some deltas. Combined outcrop and subsurface data from the Eocene Battfjellet Formation, Spitsbergen, provide an example of ancient shelf deltas that formed under mixed influence. Internally, these shelf deltas are characterized by wave‐dominated facies that are normally associated with strike‐extensive, nearly linear shoreline sandstones. However, the formation comprises partially overlapping sandstone bodies of limited lateral extent (<20 km in any direction). This stacking pattern is attributed to frequent autogenic lobe switching that caused localized and rapid transgressions. Such processes typify fluvial‐dominated deltas and occur less commonly in wave‐dominated ones. Thus, there is an apparent mismatch between inferred plan‐view morphology and internal facies composition. It is argued that the Battfjellet deltas were flood‐dominated and prograded mainly during periods of high fluvial discharge. However, reworking of the fluvial‐flood facies by fair‐weather and storm waves, as well as longshore currents, resulted in a wave‐dominated facies character. Delta lobes undergoing auto‐retreat were particularly prone to reworking by basinal processes, including tidal currents. It is suggested that repeated delta progradation from inner shelf settings towards the outer shelf and shelf edge was aided by high sediment supply rather than relative falls in sea‐level as previously suggested. This interpretation is supported by: (i) the lack of major facies dislocations and extensive sub‐aerial unconformities; and (ii) an overall relative rise in sea‐level as evidenced by an overall low‐angle (0·8 to 1·2°) ascending shoreline trajectory. The latter results from the combined effect of basin subsidence, eustatic highstand and sediment compaction. 相似文献