首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the recent advancement of computer graphics hardware and software algorithms, deformable characters have become more and more popular in real‐time applications such as computer games. While there are mature techniques to generate primary deformation from skeletal movement, simulating realistic and stable secondary deformation such as jiggling of fats remains challenging. On one hand, traditional volumetric approaches such as the finite element method require higher computational cost and are infeasible for limited hardware such as game consoles. On the other hand, while shape matching based simulations can produce plausible deformation in real‐time, they suffer from a stiffness problem in which particles either show unrealistic deformation due to high gains, or cannot catch up with the body movement. In this paper, we propose a unified multi‐layer lattice model to simulate the primary and secondary deformation of skeleton‐driven characters. The core idea is to voxelize the input character mesh into multiple anatomical layers including the bone, muscle, fat and skin. Primary deformation is applied on the bone voxels with lattice‐based skinning. The movement of these voxels is propagated to other voxel layers using lattice shape matching simulation, creating a natural secondary deformation. Our multi‐layer lattice framework can produce simulation quality comparable to those from other volumetric approaches with a significantly smaller computational cost. It is best to be applied in real‐time applications such as console games or interactive animation creation.  相似文献   

2.
Physical simulation has long been the approach of choice for generating realistic hair animations in CG. A constant drawback of simulation, however, is the necessity to manually set the physical parameters of the simulation model in order to get the desired dynamic behavior. To alleviate this, researchers have begun to explore methods for reconstructing hair from the real world and even to estimate the corresponding simulation parameters through the process of inversion. So far, however, these methods have had limited applicability, because dynamic hair capture can only be played back without the ability to edit, and solving for simulation parameters can only be accomplished for static hairstyles, ignoring the dynamic behavior. We present the first method for capturing dynamic hair and automatically determining the physical properties for simulating the observed hairstyle in motion. Since our dynamic inversion is agnostic to the simulation model, the proposed method applies to virtually any hair simulation technique, which we demonstrate using two state‐of‐the‐art hair simulation models. The output of our method is a fully simulation‐ready hairstyle, consisting of both the static hair geometry as well as its physical properties. The hairstyle can be easily edited by adding additional external forces, changing the head motion, or re‐simulating in completely different environments, all while remaining faithful to the captured hairstyle.  相似文献   

3.
Example‐based material allows simulating complex material behaviors in an art‐directed way. This paper presents a method for fast subspace integration for example‐based elastic material, which is suitable for real‐time simulation in computer graphics. At the core of the method is the formulation of a new potential using example‐based Green strain tensors. By using this potential, the deformation can be attracted towards the example‐based deformation feature space, the example weights can be explicitly obtained and the internal force can be decomposed into the conventional one and an additional one induced by the examples. The real‐time subspace integration is then developed with subspace integration costs independent of geometric complexity, and both the reduced conventional internal force and additional one being cubic polynomials in reduced coordinates. Experiments demonstrate that our method can achieve real‐time simulation while providing comparable quality with the prior art.  相似文献   

4.
We present a multi‐view stereo reconstruction technique that directly produces a complete high‐fidelity head model with consistent facial mesh topology. While existing techniques decouple shape estimation and facial tracking, our framework jointly optimizes for stereo constraints and consistent mesh parameterization. Our method is therefore free from drift and fully parallelizable for dynamic facial performance capture. We produce highly detailed facial geometries with artist‐quality UV parameterization, including secondary elements such as eyeballs, mouth pockets, nostrils, and the back of the head. Our approach consists of deforming a common template model to match multi‐view input images of the subject, while satisfying cross‐view, cross‐subject, and cross‐pose consistencies using a combination of 2D landmark detection, optical flow, and surface and volumetric Laplacian regularization. Since the flow is never computed between frames, our method is trivially parallelized by processing each frame independently. Accurate rigid head pose is extracted using a PCA‐based dimension reduction and denoising scheme. We demonstrate high‐fidelity performance capture results with challenging head motion and complex facial expressions around eye and mouth regions. While the quality of our results is on par with the current state‐of‐the‐art, our approach can be fully parallelized, does not suffer from drift, and produces face models with production‐quality mesh topologies.  相似文献   

5.
Head‐mounted displays with dense pixel arrays used for virtual reality applications require high frame rates and low latency rendering. This forms a challenging use case for any rendering approach. In addition to its ability of generating realistic images, ray tracing offers a number of distinct advantages, but has been held back mainly by its performance. In this paper, we present an approach that significantly improves image generation performance of ray tracing. This is done by combining foveated rendering based on eye tracking with reprojection rendering using previous frames in order to drastically reduce the number of new image samples per frame. To reproject samples a coarse geometry is reconstructed from a G‐Buffer. Possible errors introduced by this reprojection as well as parts that are critical to the perception are scheduled for resampling. Additionally, a coarse color buffer is used to provide an initial image, refined smoothly by more samples were needed. Evaluations and user tests show that our method achieves real‐time frame rates, while visual differences compared to fully rendered images are hardly perceivable. As a result, we can ray trace non‐trivial static scenes for the Oculus DK2 HMD at 1182 × 1464 per eye within the the VSync limits without perceived visual differences.  相似文献   

6.
Natural‐looking insect animation is very difficult to simulate. The fast movement and small scale of insects often challenge the standard motion capture techniques. As for the manual key‐framing or physics‐driven methods, significant amounts of time and efforts are necessary due to the delicate structure of the insect, which prevents practical applications. In this paper, we address this challenge by presenting a two‐level control framework to efficiently automate the modeling and authoring of insects’ locomotion. On the top level, we design a Triangle Placement Engine to automatically determine the location and orientation of insects’ foot contacts, given the user‐defined trajectory and settings, including speed, load, path and terrain etc. On the low‐level, we relate the Central Pattern Generator to the triangle profiles with the assistance of a Controller Look‐Up Table to fast simulate the physically‐based movement of insects. With our approach, animators can directly author insects’ behavior among a wide range of locomotion repertoire, including walking along a specified path or on an uneven terrain, dynamically adjusting to external perturbations and collectively transporting prey back to the nest.  相似文献   

7.
In this paper, we present an on‐line real‐time physics‐based approach to motion control with contact repositioning based on a low‐dimensional dynamics model using example motion data. Our approach first generates a reference motion in run time according to an on‐line user request by transforming an example motion extracted from a motion library. Guided by the reference motion, it repeatedly generates an optimal control policy for a small time window one at a time for a sequence of partially overlapping windows, each covering a couple of footsteps of the reference motion, which supports an on‐line performance. On top of this, our system dynamics and problem formulation allow to derive closed‐form derivative functions by exploiting the low‐dimensional dynamics model together with example motion data. These derivative functions and their sparse structures facilitate a real‐time performance. Our approach also allows contact foot repositioning so as to robustly respond to an external perturbation or an environmental change as well as to perform locomotion tasks such as stepping on stones effectively.  相似文献   

8.
We present a new technique to jointly MIP‐map BRDF and normal maps. Starting with generating an instant BRDF map, our technique builds its MIP‐mapped versions based on a highly efficient algorithm that interpolates von Mises‐Fisher (vMF) distributions. In our BRDF MIP‐maps, each pixel stores a vMF mixture approximating the average of all BRDF lobes from the finest level. Our method is capable of jointly MIP‐mapping BRDF and normal maps, even with high‐frequency variations, at real‐time while preserving high‐quality reflectance details. Further, it is very fast, easy to implement, and requires no precomputation.  相似文献   

9.
We address several limitations of the sampling‐based motion control method of Liu et at. [ LYvdP* 10 ]. The key insight is to learn from the past control reconstruction trials through sample distribution adaptation. Coupled with a sliding window scheme for better performance and an averaging method for noise reduction, the improved algorithm can efficiently construct open‐loop controls for long and challenging reference motions in good quality. Our ideas are intuitive and the implementations are simple. We compare the improved algorithm with the original algorithm both qualitatively and quantitatively, and demonstrate the effectiveness of the improved algorithm with a variety of motions ranging from stylized walking and dancing to gymnastic and Martial Arts routines.  相似文献   

10.
We present a novel approach for analyzing the quality of multi‐agent crowd simulation algorithms. Our approach is data‐driven, taking as input a set of user‐defined metrics and reference training data, either synthetic or from video footage of real crowds. Given a simulation, we formulate the crowd analysis problem as an anomaly detection problem and exploit state‐of‐the‐art outlier detection algorithms to address it. To that end, we introduce a new framework for the visual analysis of crowd simulations. Our framework allows us to capture potentially erroneous behaviors on a per‐agent basis either by automatically detecting outliers based on individual evaluation metrics or by accounting for multiple evaluation criteria in a principled fashion using Principle Component Analysis and the notion of Pareto Optimality. We discuss optimizations necessary to allow real‐time performance on large datasets and demonstrate the applicability of our framework through the analysis of simulations created by several widely‐used methods, including a simulation from a commercial game.  相似文献   

11.
We present a novel method to generate a virtual character's multi‐contact poses adaptive to the various shapes of the environment. Given the user‐specified center of mass (CoM) position and direction as inputs, our method finds the potential contacts for the character in the surrounding geometry of the environment and generates a set of stable poses that are contact‐rich. Major contributions of the work are in efficiently finding admissible support points for the target environment by precomputing candidate support points from a human pose database, and in automatically generating interactive poses that can maintain stable equilibrium. We develop the concept of support complexity to scale the set of precomputed support points by the geometric complexity of the environment. We demonstrate the effectiveness of our method by creating contact poses for various test cases of environments.  相似文献   

12.
We propose a stable and efficient particle‐based method for simulating highly viscous fluids that can generate coiling and buckling phenomena and handle variable viscosity. In contrast to previous methods that use explicit integration, our method uses an implicit formulation to improve the robustness of viscosity integration, therefore enabling use of larger time steps and higher viscosities. We use Smoothed Particle Hydrodynamics to solve the full form of viscosity, constructing a sparse linear system with a symmetric positive definite matrix, while exploiting the variational principle that automatically enforces the boundary condition on free surfaces. We also propose a new method for extracting coefficients of the matrix contributed by second‐ring neighbor particles to efficiently solve the linear system using a conjugate gradient solver. Several examples demonstrate the robustness and efficiency of our implicit formulation over previous methods and illustrate the versatility of our method.  相似文献   

13.
In this paper, we present a method to model hyperelasticity that is well suited for representing the nonlinearity of real‐world objects, as well as for estimating it from deformation examples. Previous approaches suffer several limitations, such as lack of integrability of elastic forces, failure to enforce energy convexity, lack of robustness of parameter estimation, or difficulty to model cross‐modal effects. Our method avoids these problems by relying on a general energy‐based definition of elastic properties. The accuracy of the resulting elastic model is maximized by defining an additive model of separable energy terms, which allow progressive parameter estimation. In addition, our method supports efficient modeling of extreme nonlinearities thanks to energy‐limiting constraints. We combine our energy‐based model with an optimization method to estimate model parameters from force‐deformation examples, and we show successful modeling of diverse deformable objects, including cloth, human finger skin, and internal human anatomy in a medical imaging application.  相似文献   

14.
This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free‐surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.  相似文献   

15.
16.
17.
Combining high‐resolution level set surface tracking with lower resolution physics is an inexpensive method for achieving highly detailed liquid animations. Unfortunately, the inherent resolution mismatch introduces several types of disturbing visual artifacts. We identify the primary sources of these artifacts and present simple, efficient, and practical solutions to address them. First, we propose an unconditionally stable filtering method that selectively removes sub‐grid surface artifacts not seen by the fluid physics, while preserving fine detail in dynamic splashing regions. It provides comparable results to recent error‐correction techniques at lower cost, without substepping, and with better scaling behavior. Second, we show how a modified narrow‐band scheme can ensure accurate free surface boundary conditions in the presence of large resolution mismatches. Our scheme preserves the efficiency of the narrow‐band methodology, while eliminating objectionable stairstep artifacts observed in prior work. Third, we demonstrate that the use of linear interpolation of velocity during advection of the high‐resolution level set surface is responsible for visible grid‐aligned kinks; we therefore advocate higher‐order velocity interpolation, and show that it dramatically reduces this artifact. While these three contributions are orthogonal, our results demonstrate that taken together they efficiently address the dominant sources of visual artifacts arising with high‐resolution embedded liquid surfaces; the proposed approach offers improved visual quality, a straightforward implementation, and substantially greater scalability than competing methods.  相似文献   

18.
We present a new real‐time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state‐of‐the‐art interactive shape‐matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically‐driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape‐matching simulation systems. The principal advantage of our approach is the ease with which a pseudo‐mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non‐trivial biomechanical objects simulated on a desktop machine in real‐time, demonstrating superior realism over current geometrically motivated simulation techniques.  相似文献   

19.
We present a technique for controlling physically simulated characters using user inputs from an off‐the‐shelf depth camera. Our controller takes a real‐time stream of user poses as input, and simulates a stream of target poses of a biped based on it. The simulated biped mimics the user's actions while moving forward at a modest speed and maintaining balance. The controller is parameterized over a set of modulated reference motions that aims to cover the range of possible user actions. For real‐time simulation, the best set of control parameters for the current input pose is chosen from the parameterized sets of pre‐computed control parameters via a regression method. By applying the chosen parameters at each moment, the simulated biped can imitate a range of user actions while walking in various interactive scenarios.  相似文献   

20.
In this paper, we propose an efficient data‐guided method based on Model Predictive Control (MPC) to synthesize a full‐body motion. Guided by a reference motion, our method repeatedly plans the full‐body motion to produce an optimal control policy for predictive control while sliding the fixed‐span window along the time axis. Based on this policy, the method computes the joint torques of a character at every time step. Together with contact forces and external perturbations if there are any, the joint torques are used to update the state of the character. Without including the contact forces in the control vector, our formulation of the trajectory optimization problem enables automatic adjustment of contact timings and positions for balancing in response to environmental changes and external perturbations. For efficiency, we adopt derivative‐based trajectory optimization on top of state‐of‐the‐art smoothed contact dynamics. Use of derivatives enables our method to run much faster than the existing sampling‐based methods. In order to further accelerate the performance of MPC, we propose efficient numerical differentiation of the system dynamics of a full‐body character based on two schemes: data reuse and data interpolation. The former scheme exploits data dependency to reuse physical quantities of the system dynamics at near‐by time points. The latter scheme allows the use of derivatives at sparse sample points to interpolate those at other time points in the window. We further accelerate evaluation of the system dynamics by exploiting the sparsity of physical quantities such as Jacobian matrix resulting from the tree‐like structure of the articulated body. Through experiments, we show that the proposed method efficiently can synthesize realistic motions such as locomotion, dancing, gymnastic motions, and martial arts at interactive rates using moderate computing resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号