首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.  相似文献   

2.
The Epstein-Barr virus (EBV)-encoded LMP1 protein is an important component of the process of transformation by EBV. LMP1 is essential for transformation of B lymphocytes, most likely because of its profound effects on cellular gene expression. Although LMP1 is expressed in the majority of nasopharyngeal carcinoma (NPC) tumors, the effect of LMP1 on cellular gene expression and its contribution to the development of malignancy in epithelial cells is largely unknown. In this study the effects of LMP1 on the expression and tyrosine kinase activity of the epidermal growth factor receptor (EGFR) were investigated in C33A human epithelial cells. Stable or transient expression of LMP1 in C33A cells increased expression of the EGFR at both the protein and mRNA levels. In contrast, expression of the EGFR was not induced by LMP1 in EBV-infected B lymphocytes. Stimulation of LMP1-expressing C33A cells with epidermal growth factor (EGF) caused rapid tyrosine phosphorylation of the EGFR (pp170) as well as several other proteins, including pp120, pp85, pp75, and pp55, indicating that the EGFR induced by LMP1 is functional. LMP1 also induced expression of the A20 gene in C33A epithelial cells. In C33A cells, LMP1 expression increased the proliferative response to EGF, as LMP1-expressing C33A cells continued to increase in number when plated in serum-free media supplemented with EGF, while the neo control cells exhibited very low levels of viability and did not proliferate. Immunoblot analysis of protein extracts from nude mouse-passaged NPC tumors also demonstrated that the EGFR is overexpressed in primary NPC tumors as well as those passaged in nude mice. This study suggests that the alteration in the growth patterns of C33A cells expressing LMP1 is a result of increased proliferative signals due to enhanced EGFR expression, as well as protection from cell death due to LMP1-induced A20 expression. The induction of EGFR and A20 by LMP1 may be an important component of EBV infection in epithelial cells and could contribute to the development of epithelial malignancies such as NPC.  相似文献   

3.
In this study, we investigated the induction of cellular gene expression by the Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1). Previously, LMP1 was shown to induce the expression of ICAM-1, LFA-3, CD40, and EBI3 in EBV-negative Burkitt lymphoma (BL) cells and of the epidermal growth factor receptor (EGF-R) in epithelial cells. We now show that LMP1 expression also increased Fas and tumor necrosis factor receptor-associated factor 1 (TRAF1) in BL cells. LMP1 mediates NF-kappaB activation via two independent domains located in its C-terminal cytoplasmic tail, a TRAF-interacting site that associates with TRAF1, -2, -3, and -5 through a PXQXT/S core motif and a TRADD-interacting site. In EBV-transformed B cells or transiently transfected BL cells, significant amounts of TRAF1, -2, -3, and -5 are associated with LMP1. In epithelial cells, very little TRAF1 is expressed, and only TRAF2, -3, and -5, are significantly complexed with LMP1. The importance of TRAF binding to the PXQXT/S motif in LMP1-mediated gene induction was studied by using an LMP1 mutant that contains alanine point mutations in this motif and fails to associate with TRAFs. This mutant, LMP1(P204A/Q206A), induced 60% of wild-type LMP1 NF-kappaB activation and had approximately 60% of wild-type LMP1 effect on Fas, ICAM-1, CD40, and LFA-3 induction. In contrast, LMP1(P204A/Q206A) was substantially more impaired in TRAF1, EBI3, and EGF-R induction. Thus, TRAF binding to the PXQXT/S motif has a nonessential role in up-regulating Fas, ICAM-1, CD40, and LFA-3 expression and a critical role in up-regulating TRAF1, EBI3, and EGF-R expression. Further, D1 LMP1, an LMP1 mutant that does not aggregate failed to induce TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 expression confirming the essential role for aggregation in LMP1 signaling. Overexpression of a dominant form of IkappaBalpha blocked LMP1-mediated TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 up-regulation, indicating that NF-kappaB is an important component of LMP1-mediated gene induction from both the TRAF- and TRADD-interacting sites.  相似文献   

4.
5.
6.
C3H10T1/2 fibroblasts transformed by the minimal expression of oncogenic Ha-Ras (V12H10 cells) or N-Ras (K61N10 cells) have constitutive mitogen-activated protein kinase (MAPK) activity and proliferate in serum-free medium. The constitutive MAPK activity and serum-independent proliferation of V12H10 cells are sensitive to the growth factor antagonist, suramin (Hamilton, M., and Wolfman, A. (1998) Oncogene 16, 1417-1428), suggesting that Ha-Ras-mediated regulation of the MAPK cascade is dependent upon the action of an autocrine factor. Serum-free medium conditioned by V12H10 cells contains an activity that stimulates MAPK activity in quiescent fibroblasts. This MAPK stimulatory activity could be specifically blocked by the epidermal growth factor receptor (EGFR) inhibitors, PD153035 and PD158780. These inhibitors also blocked the serum-independent proliferation of V12H10 cells. Immunodepletion of conditioned medium with antibodies to transforming growth factor alpha and EGF significantly inhibited its ability to stimulate MAPK activity. Stable transfection of EGFR-negative NR6 and EGFR-positive Swiss3T3 cells with oncogenic (G12V)Ha-Ras demonstrated that only the Ha-Ras-transfected Swiss 3T3 cells possessed constitutive MAPK activity, and this activity was sensitive to PD153035. These data suggest that autocrine activation of the EGFR is required for the regulation of the MAPK cascade in cells minimally expressing oncogenic Ha-Ras.  相似文献   

7.
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) inhibit gastric acid secretion both in vivo and in vitro. Previous studies have indicated that EGF and TGF-alpha bind to the same EGF/TGF-alpha receptor. Nevertheless, we and others have previously demonstrated that inhibition of acid secretion by these growth factors requires concentrations of the peptides that are 10-fold higher than those necessary for induction of mitogenesis. Therefore, we have sought to investigate whether gastric parietal cells may possess a second EGF/TGF-alpha receptor class. Two systems were studied: First, [125I]TGF-alpha was cross-linked to the receptor in isolated rabbit parietal cell membranes, and labeled species were resolved on SDS-PAGE. Second, acid secretion was evaluated in pylorus-ligated waved-2 mutant mice, which carry a disabling point mutation in their classical EGF/TGF-alpha receptor. In isolated parietal cells, [125I]TGF-alpha was cross-linked into a single species of 170 kDa. Cross-linking was inhibited in the presence of unlabeled TGF-alpha with an IC50 of 80 nM. In the pylorus-ligated mice, control littermate mice demonstrated a dose-dependent inhibition of acid secretion by EGF with an IC50 of 20 micrograms/kg. In contrast, EGF had no inhibitory effect on acid secretion in waved-2 mice at concentrations up to 100 micrograms/kg. No alterations in parietal cell or gastrin cell numbers were observed. These results in both isolated rabbit parietal cells and waved-2 mice support the existence of only a single class of EGF/TGF-alpha receptors in parietal cells. Differences in growth factor affinity are likely due to the modification of the receptor or one of its coordinate regulators.  相似文献   

8.
9.
The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase (ERK) activation, c-fos gene expression, and DNA synthesis in cardiac fibroblasts. Ang II induced a rapid tyrosine phosphorylation of EGF-R in association with phosphorylation of Shc protein and ERK activation. Specific inhibition of EGF-R function by either a dominant-negative EGF-R mutant or selective tyrphostin AG1478 completely abolished Ang II-induced ERK activation. Induction of c-fos gene expression and DNA synthesis were also abolished by the inhibition of EGF-R function. Calmodulin or tyrosine kinase inhibitors, but not protein kinase C (PKC) inhibitors or downregulation of PKC, completely abolished transactivation of EGF-R by Ang II or the Ca2+ ionophore A23187. Epidermal growth factor (EGF) activity in concentrated supernatant from Ang II-treated cells was not detected, and saturation of culture media with anti-EGF antibody did not affect the Ang II-induced transactivation of EGF-R. Conditioned media in which cells were incubated with Ang II could not induce phosphorylation of EGF-R on recipient cells. Platelet-derived growth factor-beta receptor was not phosphorylated on Ang II stimulation, and Ang II-induced c-jun gene expression was not affected by tyrphostin AG1478. Our results demonstrated that in cardiac fibroblasts Ang II-induced ERK activation and its mitogenic signals are dominantly mediated by EGF-R transactivated in a Ca2+/calmodulin-dependent manner and suggested that the effects of Ang II on cardiac fibroblasts should be interpreted in association with the signaling pathways regulating cellular proliferation and/or differentiation by growth factors.  相似文献   

10.
Ectopic expression of decorin induces profound cytostatic effects in transformed cells with diverse histogenetic backgrounds. The mechanism of action has only recently begun to be elucidated. Exogenous decorin activates the epidermal growth factor (EGF) receptor, thereby triggering a signaling cascade that leads to phosphorylation of mitogen-activated protein (MAP) kinase, induction of p21, and growth suppression. In this study we demonstrate a direct interaction of decorin with the EGF receptor. Binding of decorin induces dimerization of the EGF receptor and rapid and sustained phosphorylation of MAP kinase in squamous carcinoma cells. In a cell-free system, decorin induces autophosphorylation of purified EGF receptor by activating the receptor tyrosine kinase and can also act as a substrate for the EGF receptor kinase itself. Using radioligand binding assays we show that both immobilized and soluble decorin bind to the EGF receptor ectodomain or to purified EGF receptor. The binding is mediated by the protein core and has relatively low affinity (Kd approximately 87 nM). Thus, decorin should be considered as a novel biological ligand for the EGF receptor, an interaction that could regulate cell growth during remodeling and cancer growth.  相似文献   

11.
Stromal-epithelial interactions are critical in determining patterns of growth, development and ductal morphogenesis in the mammary gland, and their perturbations are significant components of tumorigenesis. Growth factors such as epidermal growth factor (EGF) contribute to these reciprocal stromal-epithelial interactions. To determine the role of signaling through the EGF receptor (EGFR) in mammary ductal growth and branching, we used mice with a targeted null mutation in the Egfr. Because Egfr-/- mice die perinatally, transplantation methods were used to study these processes. When we transplanted neonatal mammary glands under the renal capsule of immuno-compromised female mice, we found that EGFR is essential for mammary ductal growth and branching morphogenesis, but not for mammary lobulo-alveolar development. Ductal growth and development was normal in transplants of mammary epithelium from Egfr-/- mice into wild-type (WT) gland-free fat pads and in tissue recombinants prepared with WT stroma, irrespective of the source of epithelium (StromaWT/Epi-/-, StromaWT/EpiWT). However, ductal growth and branching was impaired in tissue recombinants prepared with Egfr-/- stroma (Stroma-/-/EpiWT, Stroma-/-/Epi-/-). Thus, for ductal morphogenesis, signaling through the EGFR is required only in the stromal component, the mammary fat pad. These data indicate that the EGFR pathway plays a key role in the stromal-epithelial interactions required for mammary ductal growth and branching morphogenesis. In contrast, signaling through the EGFR is not essential for lobulo-alveolar development. Stimulation of lobulo-alveolar development in the mammary gland grafts by inclusion of a pituitary isograft under the renal capsule as a source of prolactin resulted in normal alveolar development in both Egfr-/- and wild-type transplants. Through the use of tissue recombinants and transplantation, we have gained new insights into the nature of stromal-epithelial interactions in the mammary gland, and how they regulate ductal growth and branching morphogenesis.  相似文献   

12.
Polyclonal immunoglobulins were produced against the carboxy terminus, -SEFIGA, of the receptor for epidermal growth factor (EGF). The addition of these immunoglobulins to a solution containing EGF receptor resulted in the activation of its protein tyrosine kinase. The levels of activation were assessed by measuring the initial velocities of the phosphorylation of the tyrosine in angiotensin II. The enzymatic activity induced by the immunoglobulins was significant, usually 50-70% of the maximum activity induced by EGF, and the induction occurred over a narrow range of concentration of the immunoglobulins. In order to achieve the activation, the immunoglobulins had to be bivalent; the addition of monovalent Fab fragments to EGF receptor did not produce any activation of the protein tyrosine kinase. The activation produced by the immunoglobulins was found to be reversible upon the addition of the synthetic peptide SEFIGA against which the immunoglobulins had been produced. Self-phosphorylation of the EGF receptor also occurred as the enzyme was activated by the immunoglobulins. Tryptic peptide maps demonstrated that the self-phosphorylation caused by the immunoglobulins had the same signature as that produced by EGF. When the synthetic peptide that had been used as the hapten was added to EGF receptor that had been self-phosphorylated in the presence of the immunoglobulins, the stimulated enzymatic activity was lost even though the protein remained phosphorylated. It follows from the results of deletion mutation [Walton, G. M., Chen, W. S., Rosenfeld, M. G., & Gill, G. N. (1990) J. Biol. Chem. 265, 1750-1754] and the results reported here that self-phosphorylation is neither necessary nor sufficient for the activation of EGF receptor.  相似文献   

13.
14.
BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the pathogenesis of atherosclerosis and many vascular diseases. It is known that nitric oxide released from the endothelium participates in the regulation of VSMC proliferation via a cyclic 3',5'-guanosine monophosphate (cGMP)-mediated mechanism. In a series of experiments, sodium nitroprusside (SNP) and A02131-1 were evaluated for their antiproliferative effect and the mechanism of their cGMP-elevating action. METHODS AND RESULTS: The effect of SNP and A02131-1 on epidermal growth factor (EGF)-stimulated proliferation of rat aortic smooth muscle cells (VSMC) was examined. Cell proliferation was measured in terms of [3H]thymidine incorporation, flow cytometry, and the cell number. Further, their effect on the EGF-activated signal transduction pathway was assessed by measuring mitogen-activated protein kinases (MAPK), MAPK kinase (MEK). Raf-1 activity, and the formation of active form of Ras. SNP and A02131-1 inhibited EGF-induced DNA synthesis and subsequent proliferation of VSMC. These two increased cGMP but only a little cAMP in VSMC. A similar antiproliferative effect was observed with 8-bromo-cGMP. The antiproliferative effect of the two was reversed by KT5823 but not by dideoxyadenosine nor Rp-cAMPS. SNP and A02131-1 blocked the EGF-inducible cell cycle progression at the G1/S phase. Further experiments indicated that the two cGMP-elevating agents primarily blocked the activation of Raf-1 by EGF-activated Ras. CONCLUSIONS: These results demonstrate that cGMP-elevating agents inhibit [3H]thymidine incorporation and thus the growth of VSMC, and this inhibition appears to attenuate EGF-activated signal transduction pathway by preventing Ras-dependent activation of Raf-1.  相似文献   

15.
MA Helmrath  CE Shin  CR Erwin  BW Warner 《Canadian Metallurgical Quarterly》1998,33(7):980-4; discussion 984-5
BACKGROUND/PURPOSE: Intestinal adaptation after massive small bowel resection (SBR) is augmented by epidermal growth factor (EGF) via an unknown mechanism. We recently have observed that EGF increases the expression of EGF receptor mRNA and protein content in the remnant ileum after SBR. The purpose of this study was to determine whether the magnitude of EGF-induced receptor expression correlates with intestinal adaptation. METHODS: A 50% proximal SBR or sham operation (bowel transection with reanastomosis) was performed on male ICR mice. Animals from each group were then selected randomly to receive either human recombinant EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injections. The remnant ileum was harvested at 1 week, and parameters of adaptation measured as changes in protein content. Ileal EGF receptor mRNA was quantitated using a ribonuclease protection assay. Changes in the expression ileal EGF receptor protein were determined by Western blot after immunoprecipitation. Comparisons of mean values between groups was performed using analysis of variance (ANOVA) and a P value of less than .05 was considered significant. Values are presented as mean +/- SEM. RESULTS: EGF was mitogenic to the ileum after sham operation as monitored by increases in ileal protein content (2.21 +/- 0.002 mg/cm Sham v 2.97 +/- 0.25 mg/cm Sham +/- EGF; P < .05). After SBR, adaptation resulted in increased ileal protein content (4.45 +/- 0.27 mg/cm), which was substantially boosted by EGF (5.98 +/- 0.39 mg/cm; P < .05). No differences were detected in ileal EGF receptor mRNA or protein expression between Sham or SBR groups that did not receive EGF. However, EGF significantly enhanced the expression of ileal EGF receptor mRNA to an equal extent after both sham and SBR (approximately threefold). The magnitude of this increase in EGF receptor protein (four- to sixfold) was similar in both EGF groups as shown by Western blotting. CONCLUSIONS: Changes in ileal EGF receptor expression are not mandatory for adaptation to occur. EGF upregulates the expression of mRNA and protein for its own intestinal receptor in vivo. Because EGF-induced receptor expression was comparable after both SBR and Sham operation, the beneficial effect of EGF during adaptation is likely caused by other factors in addition to increased receptor expression.  相似文献   

16.
A recent report has suggested that tumor necrosis factor (TNF) utilizes acid sphingomyelinase (SMase) pathway to activate NFkB (Schutze et al. 1992. Cell 71:765). To directly investigate the role of acid SMase in IL-1 and TNF receptor-mediated signal transduction, we examined the ability of Niemann-Pick disease (NPD) type A fibroblasts, which are deficient in acid SMase, to induce IL-8 gene expression through activating NFkB. Unexpectedly, IL-1 alpha and TNF-alpha efficiently induced IL-8 production and IL-8 mRNA in NPD type A fibroblasts as in normal fibroblasts. Furthermore, activation of NFkB was also induced in NPD type A fibroblasts in response to IL-1 alpha and TNF-alpha stimulation to a similar extent as in normal fibroblasts. These results provide evidence that acid SMase is not essential in IL-1 and TNF receptor signaling leading to NFkB activation as well as the cytokine gene activation which is regulated by NFkB.  相似文献   

17.
We attempted to infect primary gastric epithelia (PGE) with recombinant Epstein-Barr virus (EBV) carrying a selectable marker that made it possible to select EBV-infected cells. Cells dually positive for EBV-determined nuclear antigen (EBNA) and cytokeratin were detected in 3 of 21 primary cultures after 3 days of EBV inoculation. From one culture, EBV-infected cell clones were repeatedly obtained at a frequency of 3 to 5 cell clones per 10(6) cells. EBV-infected clones had enhanced population doubling and grew to attain a highly increased saturation density, together with acquisition of marked anchorage independence. The infected clones retained the ultrastructural morphology characteristic of gastric mucosal epithelium and have been growing stably for more than 18 months (corresponding to at least 300 generations) so far, in clear contrast to the parental PGE cells, which ceased growth after 60 generations. The p53 gene of the parental PGE cells was found to be overexpressed, perhaps thereby conferring the basal potential for long-term survival in vitro. Moreover, EBV infection accelerated, to a significant extent, the growth rate and agar clonability of NU-GC-3 cells, an established EBV-negative but EBV-susceptible human gastric carcinoma cell line. Both EBV-converted PGE and NU-GC-3 clones, like EBV-positive gastric carcinoma biopsy specimens, expressed a restricted set of EBV latent infection genes characterized by the absence of EBNA2 and latent membrane protein 1 (LMP1) expression. These results indicate that EBV infection causes a transformed phenotype on PGE in the setting of possible unregulated cell cycling and renders even established gastric carcinoma cells more malignant via a limited spectrum of viral latent-gene expression. This study may reflect an in vivo scenario illustrating multiphasic involvement of EBV in carcinogenesis of gastric or other epithelial cancers.  相似文献   

18.
The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号