首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Semicoherent precipitates in a Fe‐Cr‐C alloy Precipitation processes in ferromagnetic materials can be recorded very well by measuring the sensitive coercive field strength. It should be tested, whether also semicoherent precipitates have a sufficient clear interaction with Bloch‐walls. For this purpose the mild‐magnetic alloy X1FeCr25 served. To carry out the evidence sensitively, a method based on differences between HCt (heat‐treated state at T = 600…︁700°C) – HC0 (quenched state from high temperature) = Δ HC was used. A quantitative record of the amount of precipitates (as particle size) is possible by a decomposition parameter Δ HC/Δ t. Plate‐like β′‐precipitates with planes {100}∥{100} in the α‐Fe solid solution have been proved by transmission electron microscopic investigations; this is the preparation state for the transition into the stable fcc phase M23C6. As a result, the quantitative electron microscopic proof of the β′‐phase can be supported by magnetic measurements, qualitatively and quantitatively. The estimated values of the activation energy for the process in the 1st maximum of precipitation in X1FeCr25 are higher than for the stable phases as the orthorhombic M3C or the cubic complex M6C in other steels and give a hint to the difficult processes related to nucleation as to the transition into M23C6.  相似文献   

2.
Rod‐shaped assemblages of Au nanoclusters (AuNCs) can serve as self‐templating solid precursors to produce tubular Au‐based nanocomposites via the coalescence induced by transition metal ions. Specifically, when the AuNC assemblages react with transition metal ions with relatively high standard oxidation potentials such as Cu(II), Ag(I), Pd(II), and Au(III), a series of polycrystalline and ultrathin Au and AuxMy (where M = Cu, Ag, and Pd) alloy hollow nanorods (HNRs) can be obtained with further reduction; these metallic products are evaluated for electrooxidation of methanol. Alternatively, the above transition metal ions‐induced transformations can also be carried out after coating the AuNC assemblages with a layer of mesoporous SiO2 (mSiO2), giving rise to many mSiO2‐coated Au‐based HNRs. Onto the formed AuPd0.18 alloy HNRs, furthermore, a range of transition metal oxides such as TiO2, Co3O4, and Cu2O nanocrystals can be deposited easily to prepare metal oxide–AuPd0.18 HNRs nanocomposites, which can be used as photocatalysts. Compared with those conventional galvanic replacement reactions, the controlled coalescence of AuNCs induced by transition metal ions provides a novel and efficient chemical approach with improved element efficiency to tubular Au‐based nanocomposites.  相似文献   

3.
The oxidation of the bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 in air in its amorphous and the supercooled liquid states was studied in the temperature range 573–663 K using X-ray photoelectron spectroscopy (XPS). The oxide film mainly consisted of the oxides of Zr (as ZrO2) and Al (as Al2O3). No Cu or Ni was found in the oxide film formed on the amorphous state of the alloy while significant Cu (as CuO) was present in the oxide film formed on the alloy in its supercooled liquid state. The role of the various alloying elements during oxidation at high temperatures in air is discussed in the paper. The XPS data from oxide film support the previously suggested mechanism for oxidation of this alloy, i.e. the rate controlling process during oxidation of the alloy at low temperatures (in the amorphous state) is the back-diffusion of Ni and Cu, while the oxidation at high temperatures (in the supercooled liquid state) is dominated by the inward diffusion of oxygen.  相似文献   

4.
Mixtures of CuO and NiO were prepared by two different techniques, and then the oxides were reduced with H2. Method A involved the preparation of mechanical mixtures of CuO and NiO using different milling and pelletizing processes. Method B involved the chemical synthesis of the mixture of CuO and NiO. The route used to prepare the copper and nickel oxide mixture was found to have great influence on the characteristics of bimetallic Cu–Ni particles obtained. Observations performed using the X-ray diffraction (XRD) technique showed that although both methods led to the Cu–Ni solid solution, the diffractogram of the alloy obtained with method A revealed the presence of NiO together with the alloy. The temperature-programmed reduction (TPR) experiments indicated that the alloy is formed at lower temperatures when using method B. The scanning electron microscopy (SEM) studies revealed notable differences in the morphology and size distribution of the bimetallic particles synthesized by different routes. The results of the electron probe microanalysis (EPMA) studies evidenced the existence of a small amount of oxygen in both cases and demonstrated that the alloy synthesized using method B presented a homogeneous composition with a Cu–Ni ratio close to 1:1. On the contrary, the alloy obtained using method A was not homogeneous in all the volume of the solid. The homogeneity depended on the mechanical treatment undergone by the mixture of the oxides.  相似文献   

5.
The effect of intermetallic compound layer between Sn‐4.0 Ag‐0.5Cu solder bump and electroless nickel/immersion silver (ENImAg) surface finish under different cooling rate during multiple reflow condition was investigated. The results show that the interfacial (Cu, Ni)6Sn5 intermetallic compound were formed at the early stage after the first reflow process. After multiple reflow processes, both (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 appeared as needle‐shaped at interface due to the amount of copper concentration into a solder balls. The spalling intermetallic compound of (Cu, Ni)6Sn5 was spotted in the solder which was caused by the formation of needle‐shaped from the gaps of (Cu, Ni)6Sn5. The intermetallic compound thickness and grain sizes became thicker and coarser with increasing reflow time, respectively. The results also perceived that the cooling rate condition can influence the growth of intermetallic compound formation. Faster cooling rate produced thinner intermetallic layer as well as smaller grain sizes compared to slow cooling rate. Hence, the cooling rate is a necessary parameter in the solder reflow process because it has an impact on the microstructure of morphology and intermetallic growth.  相似文献   

6.
In order to optimize the aging treatment of Mg‐1.8Zn‐0.7Si‐0.4Ca alloy, different times and temperatures of solid solution and age hardening were applied to the alloy specimens. Microstructures and mechanical properties of the specimens were investigated using the optical microscopy, field emission scanning electron microscopy equipped with an energy dispersive x‐ray spectrometer, x‐ray diffraction, hardness, and shear punch tests. The lowest hardness and strength were achieved by solution treating of the alloy at 500 °C for 8 h, presenting the optimal condition for solution treatment of the alloy. The microstructural examinations revealed three different precipitates consisting of CaMgSi, Ca2Mg6Zn3, and Mg2Si in the solid solution specimens. It was found that the highest peak hardness and strength are obtained by aging the alloy at 150 °C for 16 h. This condition was confirmed by differential scanning calorimetry (DSC) tests performed on the solid solution and aged specimens.  相似文献   

7.
Dealloyed Pt bimetallic core–shell catalysts derived from low‐Pt bimetallic alloy nanoparticles (e.g, PtNi3) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub‐10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size‐controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size‐selected growth mechanism is studied comprehensively. This enables us to address their size‐dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt‐rich bimetallic nanoparticles, the Pt‐poor PtNi3 nanoparticles exhibit an unusual “volcano‐shaped” size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long‐term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity.  相似文献   

8.
Co80Ni20 powder mixture was mechanically alloyed by high-energy planetary ball milling, starting from elemental Co and Ni metal powders. The morphological, microstructural, thermal and magnetic properties of the milled powders were characterised respectively by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and vibratory sample magnetometry. In addition to a highly disordered phase, two face-centred cubic (FCC) and hexagonal close-packed (HCP), solid solutions, FCC Co(Ni), FCC Ni(Co) and HCP Co(Ni), are observed after 3 h of milling. Their grain sizes decrease with increase in milling time attaining, at 48 h of milling, 12 nm, 25 nm and 10 nm, respectively. Beyond a certain milling time, no further refinement of the microstructure occurs and the morphological equilibrium is usually given by a bimodal particle size distribution. Magnetic measurements of the milled Co80Ni20 alloy powder exhibit a soft ferromagnetic character where the magnetic parameters are sensitive to the milling time mainly due to the particle size refinement as well as the formation of Co(Ni) and Ni(Co) solid solutions. Both the saturation magnetisation ( M s) and coercivity ( H c) were found to decrease with milling time, attaining the values of M s = 126 emu/g and H c = 60 Oe after 48 h of milling.  相似文献   

9.
The surface oxidation behaviour of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 was investigated in situ by using X-ray photoelectron spectroscopy (XPS). The initial stages of oxidation at room temperature were studied by exposing the clean alloy specimen surface to varying doses of pure oxygen (up to 1,000 L) in an UHV chamber. Progressive oxidation of Zr, Be and Ti was observed with increasing doses, the major species in the oxide layer being Zr(IV) and Be(II) possibly existing as ZrO2, BeO, while Cu and Ni remained in their elemental forms. High temperature in situ oxidation in the temperature range 423–653 K for a fixed oxygen dose of 300 L was also investigated. Oxidation of Be was observed at all temperatures, while a sharp decrease in the oxidation of Zr and Ti was observed for temperatures at 573 K and above. The results show a preferential oxidation of Be and Zr at room temperature, while at higher temperatures oxidation is controlled by the reduction of oxides of Zr and Ti and the diffusion of oxygen into the alloy bulk. The role of the dissolved carbon impurity in the reduction of the oxides is discussed.  相似文献   

10.
In this work preliminary results are reported on the characterization of Pb-free joints produced by using a diffusion soldering method at a process temperature of 700 °C during 20 min. The solder alloy is a metallic paste involving Ga and Al and Ni powder, and the substrates are Cu and Ni. The dissolution and diffusion-reaction processes, which take place at the interfaces of the interconnection zone, have been investigated by means of SEM and EPMA. A solid solution and intermetallic compounds (IMCs) with high melting point form as layers almost free from defect, allowing service temperatures about 500 °C higher than the process temperature. The phase stability sequence starting from the Ni to the Cu interface is the following: α′-Ni3Ga, γ-Cu9Ga4, β-Cu3Ga and (Cu) solid solution of the Ga–Cu system. The relative reaction front displacement of the layers and the implications of the present findings for the applicability of the diffusion-soldering method are also discussed.  相似文献   

11.
Stable solid‐state red fluorescence from organosilane‐functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the efficient construction of dual‐fluorescence morphologies. The quantum yield of these solid‐state CDs and their aqueous solution is 9.60 and 50.7%, respectively. The fluorescence lifetime is 4.82 ns for solid‐state CDs, and 15.57 ns for their aqueous solution. These CDs are detailedly studied how they can exhibit obvious photoluminescence overcoming the self‐quenching in solid state. Luminescent materials are constructed with dual fluorescence based on as‐prepared single emissive CDs (red emission) and nonfluorescence media (starch, Al2O3, and RnOCH3COONa), with the characteristic peaks located at nearly 440 and 600 nm. Tunable photoluminescence can be successfully achieved by tuning the mass ratio of CDs to solid matrix (such as starch). These constructed dual‐fluorescence CDs/starch composites can also be applied in white light‐emitting diodes with UV chips (395 nm), and oxygen sensing.  相似文献   

12.
The growth and characterization of an n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO2/Ni passivated n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO2/Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm?2, leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm?2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm?2 for the coated n‐GaP and n‐GaP/i‐GaNP/p+‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p+‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of the wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.  相似文献   

13.
The influence of hafnium element’s incorporation on a Cu–xHf–13.0Al–4.0Ni (wt-%) (x?=?0.5, 1.0 and 2.0) high-temperature shape memory alloy was investigated systematically. The results show that the matrix of Cu–xHf–13.0Al–4.0Ni (x?=?0.5, 1.0 and 2.0) alloys is 18R martensite, and an orthorhombic-structured Cu8Hf3 phase is formed and distributed at the grain boundaries. The grain size is significantly reduced with increasing Hf content. The mechanical properties of Cu–xHf–13.0Al–4.0Ni (x?=?0.5, 1.0 and 2.0) alloys are improved by Hf doping due to the combination of refinement strengthening, solid solution strengthening and second phase strengthening. After heating under pre-strain of 10%, the shape memory effect of the Cu–1.0Hf–13.0Al–4.0Ni alloy reaches 5.6%, which is obviously higher than that of the Cu–13.0Al–4.0Ni alloy.  相似文献   

14.
Two high temperature alloys, namely Mo‐13Zr‐25.9B and Mo‐17.4Zr‐34.8B (in at. %), which were specified as eutectic compositions according to the literature were produced with a zone melting (ZM) method [1, 2]. Investigations with a scanning electron microscope demonstrated that the microstructures of both alloys are not completely eutectic. The alloy Mo‐13Zr‐25.9B shows well‐aligned arrangements of their microstructural constituents along the crystallization direction. X‐ray diffraction analysis revealed the phases molybdenum solid solution and zirconium monoboride (ZrB) in each alloy and, additionally, in alloy Mo‐13Zr‐25.9B the phases Mo2Zr and dimolybdenum boride (Mo2B) and in alloy Mo‐17.4Zr‐34.8B the phase zirconium diboride (ZrB2). Moreover, the microhardness of the individual phases was measured. The fracture toughness of both materials was determined using the SEVNB method according to DIN EN ISO 23146. Finally, the creep resistance of the alloys was tested at 1100 °C under compressive loading and compared with other molybdenum alloys and a single‐crystalline nickel based superalloy.  相似文献   

15.
Development of effective oxygen evolution reaction (OER) electrocatalysts has been intensively studied to improve water splitting efficiency and cost effectiveness in the last ten years. However, it is a big challenge to obtain highly efficient and durable OER electrocatalysts with overpotentials below 200 mV at 10 mA cm?2 despite the efforts made to date. In this work, the successful synthesis of supersmall α‐Ni(OH)2 is reported through electro‐oxidation of NiSe2 loaded onto carbon nanoarrays. The obtained α‐Ni(OH)2 shows excellent activity and long‐term stability for OER, with an overpotential of only 190 mV at the current density of 10 mA cm?2, which represents a highly efficient OER electrocatalyst. The excellent activity could be ascribed to the large electrochemical surface area provided by the carbon nanoarray, as well as the supersmall size (≈10 nm) of α‐Ni(OH)2 which possess a large number of active sites for the reaction. In addition, the phase evolution of α‐Ni(OH)2 from NiSe2 during the electro‐oxidation process was monitored with in situ X‐ray absorption fine structure (XAFS) analysis.  相似文献   

16.
Dissimilar Mg alloy and Q235 steel lap joints are produced by Laser‐ tungsten inert gas (TIG) hybrid welding with Ni as an interlayer. Fe and Ni are joined together in the form of solid solution, while Mg alloy and Ni foil are joined together by intermetallic compound Mg2Ni. During tensile testing, the joints fail at the interface between Ni foil and Mg alloy. The shear strength of the Mg/Steel joints with Ni as interlayer is 170 MPa, which is higher than that without interlayer 120MPa.  相似文献   

17.
2D metal–organic frameworks (2D MOFs) are promising templates for the fabrication of carbon supported 2D metal/metal sulfide nanocomposites. Herein, controllable synthesis of a newly developed 2D Ni‐based MOF nanoplates in well‐defined rectangle morphology is first realized via a pyridine‐assisted bottom‐up solvothermal treatment of NiSO4 and 4,4′‐bipyridine. The thickness of the MOF nanoplates can be controlled to below 20 nm, while the lateral size can be tuned in a wide range with different amounts of pyridine. Subsequent pyrolysis treatment converts the MOF nanoplates into 2D free‐standing nitrogen‐doped Ni‐Ni3S2@carbon nanoplates. The obtained Ni‐Ni3S2 nanoparticles encapsulated in the N‐doped carbon matrix exhibits high electrocatalytic activity in oxygen evolution reaction. A low overpotential of 284.7 mV at a current density of 10 mA cm?2 is achieved in alkaline solution, which is among the best reported performance of substrate‐free nickel sulfides based nanomaterials.  相似文献   

18.
Mechanical alloying method was used to prepare nanocrystalline Co52Fe26Ni22 alloy. X-ray diffraction was applied for determination of the structure of the alloy. During milling Co-based solid solution with f.c.c. lattice was formed. After 80 h of synthesis the lattice parameter was equal to 0.3575 nm while the average grain sizes and the mean level of internal strains were about 24 nm and 0.72%, respectively. Mössbauer spectroscopy was adopted to characterize the local atomic order of the Co52Fe26Ni22 alloy. In the nearest neighbourhood of 57Fe isotopes there are at least six Co atoms, three Ni atoms and three Fe atoms giving the hyperfine magnetic field equal to 32.45(1) T. Magnetization measurements allowed to determine the effective magnetic moment of the Co52Fe26Ni22 alloy to be equal to 1.63 μB per formula unit. Curie temperature of the obtained alloy is equal to 1000 K.  相似文献   

19.
Abstract

Cu-In-Cr ternary alloy specimens were prepared with a metal mould and analysed by OP, EPMA, SEM, etc. The results show that the phase composition of Cu-11In-10Cr (wt-%) ternary alloy in casting microstructure includes Cu solid solution, Cr solid solution and Cu9In4 (δ) phase. Cu solid solution has dendritic morphology while Cr solid solution is star or petal shaped and is dispersed. In solidification, the solid/liquid interfaces of Cu solid solution and Cr solid solution are nonfaceted and they form by continuous growth, Cu solid solution forms dendrites under the influence of constitutional supercooling, while Cr solid solution forms equiaxed dendrites owing to the restricted chromium content. Chromium content has an influence on the morphology of Cu solid solution dendrites and Cr solid solution.  相似文献   

20.
Developing highly active electrocatalysts with low cost and high efficiency for hydrogen evolution reactions (HERs) is of great significance for industrial water electrolysis. Herein, a 3D hierarchically structured nanotubular copper‐doped nickel catalyst on nickel foam (NF) for HER is reported, denoted as Ni(Cu), via facile electrodeposition and selective electrochemical dealloying. The as‐prepared Ni(Cu)/NF electrode holds superlarge electrochemical active surface area and exhibits Pt‐like electrocatalytic activity for HER, displaying an overpotential of merely 27 mV to achieve a current density of 10 mA cm?2 and an extremely small Tafel slope of 33.3 mV dec?1 in 1 m KOH solution. The Ni(Cu)/NF electrode also shows excellent durability and robustness in both continuous and intermittent bulk water electrolysis. Density functional theory calculations suggest that Cu substitution and the formation of NiO on the surface leads to more optimal free energy for hydrogen adsorption. The lattice distortion of Ni caused by Cu substitution, the increased interfacial activity induced by surface oxidation of nanoporous Ni, and numerous active sites at Ni atom offered by the 3D hierarchical porous structure, all contribute to the dramatically enhanced catalytic performance. Benefiting from the facile, scalable preparation method, this highly efficient and robust Ni(Cu)/NF electrocatalyst holds great promise for industrial water–alkali electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号