首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal–organic nanomeshes with ordered mesopores is obtained by a self‐assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies ( ≈ 9 nm thickness), hexagonally ordered, permeable mesopores of ≈ 16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur‐doped metal phosphonate nanomeshes by serving as an unprecedented reactive self‐template. Furthermore, as advanced anode materials for Li‐ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate‐based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.  相似文献   

3.
4.
5.
6.
7.
Rational design of cost‐effective, nonprecious metal‐based catalysts with desirable oxygen reduction reaction (ORR) performance is extremely important for future fuel cell commercialization, etc. Herein, a new type of ORR catalyst of Co‐N‐doped mesoporous carbon hollow sphere (Co‐N‐mC) was developed by pyrolysis from elaborately fabricated polystyrene@polydopamine‐Co precursors. The obtained catalysts with active Co sites distributed in highly graphitized mesoporous N‐doped carbon hollow spheres exhibited outstanding ORR activity with an onset potential of 0.940 V, a half‐wave potential of 0.851 V, and a small Tafel slope of 45 mV decade?1 in 0.1 m KOH solution, which was comparable to that of the Pt/C catalyst (20%, Alfa). More importantly, they showed superior durability with little current decline (less than 4%) in the chronoamperometric evaluation over 60 000 s. These features make the Co‐N‐mC one of the best nonprecious‐metal catalysts to date for ORR in alkaline condition.  相似文献   

8.
9.
Photonic crystals (PCs) are ideal candidates for reflective color pigments with high color purity and brightness due to tunable optical stop band. Herein, the generation of PC microspheres through 3D confined supramolecular assembly of block copolymers (polystyrene‐block‐poly(2‐vinylpyridine), PS‐b‐P2VP) and small molecules (3‐n‐pentadecylphenol, PDP) in emulsion droplets is demonstrated. The intrinsic structural colors of the PC microspheres are effectively regulated by tuning hydrogen‐bonding interaction between P2VP blocks and PDP, where reflected color can be readily tuned across the whole visible spectrum range. Also, the effects of both PDP and homopolymer (hPS) on periodic structure and optical properties of the microspheres are investigated. Moreover, the spectral results of finite element method (FEM) simulation agree well with the variation of structural colors by tuning the periodicity in PC microspheres. The supramolecular microspheres with tunable intrinsic structural color can be potentially useful in the various practical applications including display, anti‐counterfeit printing and painting.  相似文献   

10.
11.
12.
13.
Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation–induced co‐assembly process is employed to design ordered mesoporous CexZr1?xO2 (0 ≤ x ≤ 1) solid solutions by using high‐molecular‐weight poly(ethylene oxide)‐block‐polystyrene as the template. The obtained mesoporous CexZr1?xO2 possesses high surface area (60–100 m2 g?1) and large pore size (12–15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8Zr0.2O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8Zr0.2O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well‐interconnected pore structure of the mesoporous Pt/Ce0.8Zr0.2O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/CexZr1?xO2‐s with small pore size (3.8 nm), ordered mesoporous Pt/CexZr1?xO2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.  相似文献   

14.
15.
16.
17.
Block copolymers (BCPs) have the capacity to self‐assemble into a myriad of well‐defined aggregate structures, offering great promise for the construction of drug delivery, photolithographic templates, and complex nanoscale assemblies. A uniqueness of these materials is their propensity to become kinetically frozen in non‐equilibrium states, implying that the process of self‐assembly can be utilized to remodel the resulting structures. Here, a new semiconfined system for processing the BCP self‐assembly is constructed, in which an unusual dual‐phase separation occurs, including nonsolvent‐induced microphase separation and osmotically driven macrophase separation, ultimately yielding heterogeneous BCP membranes. These membranes with cellular dimensions show unique anisotropy that can be used for cell encoding and patterning, which are highly relevant to biology and medicine. This processing method not only provides new levels of tailorability to the structures and encapsulated contents of BCP assemblies, but can also be generalized to other block polymers, particularly those with attractive electronic and/or optical properties.  相似文献   

18.
19.
The creation of three‐dimensional (3D) structures from two‐dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out‐of‐plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号