首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
1953 - 2016年华山积雪变化特征及其与气温和降水的关系   总被引:1,自引:1,他引:1  
李亚丽  雷向杰  李茜  余鹏  韩婷 《冰川冻土》2020,42(3):791-800
利用华山气象站1953 - 2016年气象观测资料和1989 - 2016年Landsat TM卫星遥感影像数据, 分析华山积雪变化的基本特征及其与气温、 降水和大气环流的关系。结果表明: 1953 - 2016年华山平均积雪日数78.5 d, 积雪主要出现在每年的10月 - 次年5月, 64 a来积雪初日推迟, 终日提前, 初终间日数减少, 年度、 冬半年、 冬季积雪日数分别以8.3 d?(10a)-1、 7.6 d?(10a)-1、 4.7 d?(10a)-1的减少率显著减少。1981 - 2016年华山年度最大积雪深度减少趋势不显著, 年度累积积雪深度以88.2 cm?(10a)-1的减少率显著减少, 一年中积雪日数、 最大积雪深度和累积积雪深度的减少(小)趋势均以3月最为显著。1989 - 2016年华山区域积雪面积、 浅雪和深雪面积减少趋势不明显。1953 - 2016年华山年度、 冬半年、 冬季平均气温升高, 降水量减少。积雪日数与平均气温存在显著的负相关, 与降水量存在显著的正相关, 气温是影响华山积雪日数的最主要因素。年度、 冬半年和冬季积雪日数突变年份与相应时段平均气温突变年份相近。1953 - 2016年华山冬半年、 冬季平均气温和降水量均与大气环流指数相关显著, 华山冬半年和冬季积雪日数与同期西藏高原指数、 印缅槽强度指数、 南极涛动指数和西太平洋副高西伸脊点指数为明显的负相关, 与850 hPa东太平洋信风指数、 亚洲区极涡面积指数为明显正相关。  相似文献   

2.
秦岭区域性高山积雪事件变化特征分析   总被引:2,自引:0,他引:2  
韩婷  雷向杰  李亚丽  王毅勇 《冰川冻土》2021,43(4):1040-1048
为了研究秦岭高山积雪事件变化特点,利用秦岭陕西境内32个国家气象站1980—2016年度共37年高山积雪观测记录,统计分析5个或者5个以上气象站连续积雪日数≥3 d的区域性高山积雪事件、5个或者5个以上气象站连续积雪日数≥20 d的区域性长时间高山积雪事件、5个或者5个以上气象站连续积雪日数≥60 d的区域性稳定高山积...  相似文献   

3.
李茜  魏凤英  雷向杰 《冰川冻土》2020,42(3):780-790
根据1961 - 2016年秦岭地区32个气象站点的气温、 降水及积雪等相关数据, 运用REOF、 M-K检验和小波分析等方法, 对秦岭地区冷季积雪日数的时空变化和影响因子进行分析。结果表明: 秦岭地区冷季多年平均积雪日数表现为北坡比南坡积雪日数多。在全球气候变暖的背景下, 海拔越高积雪日数减少的越多。秦岭冷季积雪日数呈现显著减少的趋势, 5个区的积雪日数年代际变化特征显著, 在20世纪末到21世纪初发生了由积雪日数偏多到偏少的突变。各区冷季积雪日数的周期变化主要集中在10 ~ 20 a, 秦岭南坡同时也显示了较为明显的4 a左右的周期变化。西北太平洋海温阶段性增暖是导致秦岭冷季积雪日数减少的外强迫因素。秦岭地区冷季平均气温的显著增暖和冷季降水量的显著减少直接造成积雪日数的减少。秦岭冷季积雪日数减少的突变要比气温增暖的突变大约滞后4 ~ 7 a。  相似文献   

4.
1957-2009年中国台站观测的关键积雪参数时空变化特征   总被引:5,自引:2,他引:5  
利用1957-2009年中国地面气象台站观测积雪资料分析表明, 中国年平均雪深、雪水当量、积雪密度分别为0.49 cm、0.7 mm、0.14 g·cm-3. 平均来说, 三者在青藏高原地区都是最小的, 在西北地区均较大; 空间上, 中国年平均雪深和雪水当量大值区位于东北和新疆北部, 以及青藏高原西南部的小部分区域; 中国大部分地区年平均积雪密度在0.14 g·cm-3以下, 3大稳定积雪区积雪密度略高. 1957-2009年, 中国及各区域年平均雪深和雪水当量均表现为波动增加趋势, 但不显著; 空间上雪深的显著正趋势主要位于内蒙古东部、东北北部、新疆西北部和青藏高原东北部; 雪水当量与雪深类似, 但正趋势范围不如前者广, 负趋势范围则较大.  相似文献   

5.
青藏高原是气候变化的敏感区,其积雪在区域水文循环和气候系统中具有重要作用。本文利用1980—2020年逐日无云积雪覆盖遥感数据,分析了该地区近40年的积雪面积、积雪覆盖日数的分布特征和变化趋势。结果表明:青藏高原地区积雪分布具有明显的空间分异和垂直地带性分布特征,阿姆河流域、印度河流域、塔里木盆地、恒河流域、怒江流域和雅鲁藏布江流域的高海拔山区是积雪广泛分布的地区。在水文年内,高原地区积雪覆盖率呈单峰变化,8月上旬积雪面积最小,1月中下旬达到最大,分别占高原总面积的5.2%和38.6%;40年间,高原地区平均积雪面积以3.9×104 km2·(10a)-1的趋势显著减少(P<0.05);积雪覆盖日数以0.47 d·a-1的趋势显著减少,高原71.4%的区域积雪覆盖日数呈减少趋势,呈显著减少的区域约占55.3%;17.1%的区域积雪覆盖日数呈显著增加趋势,且主要分布在5 200 m以上的高海拔山区,在海拔5 200~5 900 m之间的区域,积雪覆盖日数的增加率随海拔升高而增加。  相似文献   

6.
青藏高原中东部积雪深度时空变化特征及其成因分析   总被引:1,自引:5,他引:1  
基于逐日积雪深度(雪深)、逐月气温和逐月降水量地面观测资料,利用数理统计方法分析了青藏高原中东部地区1961-2014年雪深时空变化特征及其成因,结果表明:青藏高原雪深空间分布不均,存在喜马拉雅山脉南坡(高原西南部)、念青唐古拉山-唐古拉山-巴颜喀拉山-阿尼玛卿山(高原中部)和祁连山脉(高原东北部)三处雪深高值区,冬季最大,其次是春秋季,夏季仅在纬度或海拔较高处才有雪深记录;从长期来看雪深以减少为主,尤其是夏秋季。在青藏高原普遍"增温增湿"背景下,雪深表现为先增后减的变化特征;雪深随海拔升高而增加,但最大雪深并非出现在最高海拔处;在不同季节雪深的气象要素成因上,冬季由降水主导,其余季节由气温主导。1961-1998年冬春季雪深增加与降水增多有关,而1998-2014年气温的上升以及降水的减少共同导致了雪深的减少,夏秋季雪深持续减少与同期气温持续升高有关。  相似文献   

7.
积雪作为干旱区的重要水源,深刻影响区域水资源及经济发展。决定积雪量的积雪深度、积雪面积和积雪密度在时空分布上存在不确定性,尤其是积雪密度难以获取。本文利用FY-3B/MWRI(Fengyun3B Microwave Radiation Imager)数据反演积雪密度,结合1979-2020年长时间序列遥感雪深数据集,对天山地区40多年来积雪期(11月-次年3月)及其不同时期(积累期、稳定期、消融期)的积雪量进行估算,并分析其时空分布及与地形、气象等因子之间的关系。结果表明:1979-2020年,天山地区积雪期不同时期积雪量存在差异,稳定期积雪量最大,消融期次之,积累期最小。研究时段内,积雪期积雪量最大值出现在1979年,最小值出现在1998年,积雪期积雪量呈微弱的下降趋势,消融期积雪量下降趋势显著。多年平均积雪量空间格局与积雪深度和积雪密度基本一致,主要呈现为西北多东南少的特点。天山地区积雪量空间分布主要受海拔、坡度影响,积雪量与海拔正相关,海拔越高,积雪量越丰富;在15°以下时,坡度对积雪的影响较大,且坡度越大,积雪量越大。不同时期积雪量的多年变化与气温关系密切,在一定温度范围内,气温越低,积雪量越大;稳定期积雪量变化同时受积累期降水影响,积累期降水越多,稳定期积雪量越大。本文基于遥感积雪深度和密度的天山积雪量研究结果,可供气候变化条件下新疆水资源利用和经济发展参考。  相似文献   

8.
三江源地区气象站点稀疏,依靠地面台站数据难以反映地面真实积雪情况。利用卫星遥感数据引入重心模型分析了三江源地区1980—2019年4个积雪参数(积雪日数、积雪深度、积雪初日和积雪终日)的时空动态特征,利用Mann-Kendall检验和Sen斜率估计分析了积雪和气候因子的变化趋势,并探究积雪对气候变化的响应。结果表明:1980—2019年三江源地区呈现积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的变化趋势,而该区域同期的气温和降水量则呈现上升趋势;4个积雪参数重心均呈现出东移趋势,而同期气温重心则呈现西移趋势,气温重心位置西移速率分别是积雪日数和积雪深度重心位置东移速率的6倍和2倍。这表明该区域4个积雪参数以及气候因子的变化趋势具有较强的空间异质性,西部气温升高速率大于东部,导致西部积雪日数和积雪深度减少速率同样大于东部,从而导致气温重心西移而积雪参数重心东移。澜沧江源区积雪日数减少、积雪深度减少、积雪初日推迟以及积雪终日提前的速率最大,其次是长江源区和黄河源区。进一步的相关性分析表明,三江源地区年平均气温的升高是导致积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的主要影响因子,积雪日数对气温升高响应最敏感,其次是积雪深度、初日和终日;而年降水量与4个积雪参数的相关性均不显著。研究可为三江源地区水资源和生态环境保护提供基础资料和理论依据。  相似文献   

9.
新疆阿勒泰地区积雪变化特征及其对冻土的影响   总被引:1,自引:3,他引:1  
依据新疆阿勒泰地区气象台站观测的1961-2011年最大积雪深度、 积雪日数资料与安装在库威水文站的雪特性站观测的积雪密度资料, 讨论了新疆阿勒泰地区积雪的变化特征. 结果表明: 阿勒泰地区近50 a来最大积雪深度变化均呈显著增加的趋势, 且西部最大积雪深增加趋势大于东部. 积雪日数变化较为复杂, 在空间分布上有差异, 位于最东面的富蕴和青河50 a来积雪日数呈减少趋势, 其余各站均为增加趋势, 且东部历年平均积雪日数略高于西部, 积雪日数的增加趋势比最大积雪深度增长得平缓. 2011年8月-2012年9月在阿勒泰额尔齐斯河上游库威水文站架设的雪特性站观测资料表明, 在额尔齐斯河源头高山区冬季积雪主要是空心化的密实化过程, 升华可能是其主要的物质损失过程, 引起升华的主要气象要素是气温、 风速和水汽压. 各站月最大冻结深度与海拔关系较为密切, 随海拔的增加而增大. 积雪20 cm厚是积雪对下伏土壤冻结影响的一个界限, 积雪厚度超过20 cm就有一定的保温作用; 积雪超过40 cm时, 气温变化对下伏土壤冻结的影响保持稳定, 冻结深度也达到稳定值; 但当积雪厚度超过70 cm之后, 冻结深度会再次发生变化, 可能是由于地温从下向上的影响或地温不能与气温交换而产生的又一次变化.  相似文献   

10.
2000-2005年青藏高原积雪时空变化分析   总被引:10,自引:6,他引:10  
王叶堂  何勇  侯书贵 《冰川冻土》2007,29(6):855-861
利用MODIS卫星反演的积雪资料以及同期气象资料,分析了2000-2005年青藏高原积雪分布特征、年际变化及其与同期气温和降水的关系,结果表明:青藏高原积雪分布极不均匀,四周山区多雪,腹地少雪;高原积雪期主要集中在10月到翌年5月;2000-2005年高原积雪年际变化差异较大,积雪面积总体上呈现冬春季减少、夏秋季增加的趋势;气温和降水是影响高原积雪变化的基本因子.冬季,高原积雪面积变化对降水更为敏感;春季,气温是影响高原积雪面积变化更主要的因素.  相似文献   

11.
2001—2019年横断山区积雪时空变化及其影响因素分析   总被引:1,自引:0,他引:1  
基于MOD10A2积雪产品提取横断山区积雪日数及积雪覆盖率等信息,结合横断山区129个地面气象站点的气象数据,采用趋势分析、相关分析及随机森林回归模型等方法分析了横断山区积雪时空分布特征及其影响因素。结果表明:年平均积雪覆盖率的年际变化呈不显著的下降趋势;年内变化呈“单峰”型曲线,其中3月积雪覆盖率最大,为55.04%。海拔3 000 m以上的积雪覆盖率较为稳定,海拔1 000~3 000 m之间的积雪覆盖率波动较大。受暖湿气流和地形影响,阴坡积雪覆盖率大于阳坡。横断山区积雪日数的分布具有纬度地带性,北部山区积雪分布广泛且积雪日数高,南部云贵高原积雪日数低。年均积雪日数介于55.16~79.47 d,积雪日数在28.46%的地区呈减少趋势,在21.66%的地区呈增加趋势,其中呈显著减少和显著增加的地区分别为2.65%和0.68%。中部康定市、九龙县及其周边地区减少趋势明显,北部杂多县—若尔盖县一线的高海拔山地增加趋势明显。积雪日数整体上与降水量、相对湿度呈正相关,与风速、气温和日照时数呈负相关。与降水量呈显著正相关的地区主要分布在西北部杂多县、称多县;与风速呈显著负相关的地区主要分布在西北部称多县、中部康定市;与气温呈显著负相关的地区主要分布在中部九龙县、西北部称多县;与相对湿度呈显著正相关的地区主要分布在北部杂多县—石渠县一线;与日照时数呈显著负相关的地区主要分布在东北部玛曲县、西北部称多县。积雪日数受气温和高程的影响最大,而日照时数和风速为次要因素。  相似文献   

12.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差.  相似文献   

13.
在全球气候变化背景下, 第三极和北极地区积雪是地表最活跃的自然要素之一, 其动态变化对气候环境和人类生活产生重要影响。通过回顾第三极和北极积雪研究进展, 阐述了降雪、 积雪范围、 积雪日数、 积雪深度和雪水当量在第三极和北极地区的时空分布特征和变化趋势。结果表明: 近50年, 特别是进入21世纪以来, 第三极和北极地区降雪比率均呈下降趋势; 积雪范围、 积雪日数、 积雪深度、 雪水当量总体均呈减小趋势, 融雪首日有所提前。同时就积雪变化对生态系统与气候系统的影响进行了论述, 评估了积雪的反馈作用。通过总结第三极和北极积雪变化研究进展, 凝练研究中存在的不足和未来发展趋势, 为提升积雪对气候变化及经济社会发展影响的认识提供重要科学支撑。  相似文献   

14.
2001-2015年天山山区积雪时空变化及其与温度和降水的关系   总被引:3,自引:9,他引:3  
采用2001-2015年MODIS积雪和陆表温度数据、中国高时空分辨率降水数据,基于趋势分析和相关分析方法,分析了天山山区积雪时空变化及其与温度和降水的关系。结果表明:(1)年内积雪面积变化受海拔影响,海拔≤4 000 m,呈单峰型分布,积雪面积冬季大,夏季小;海拔介于4 000~≤5 000 m,积雪面积分别在春季和秋季出现两次峰值;海拔>5 000 m,积雪面积变化与低海拔相反,在夏季达到最大,冬季最小。就年际变化而言,全区积雪面积呈略微减少趋势,其中秋季略微增加,春季变化不大,冬季和夏季明显减少。(2)积雪覆盖频率受水汽来向和地形影响,呈西高东低、北高南低分布格局,与海拔呈正相关。山区大部分区域积雪覆盖频率呈减少趋势,其中海拔介于3 600~≤4 600 m的积雪覆盖频率减少最为显著。(3)在春、夏季,温度是决定积雪面积变化的主要因素,与积雪面积呈负相关;在秋、冬季,降水对积雪面积变化的贡献大于温度,与积雪面积呈正相关。(4)积雪覆盖频率整体上与年均温度呈负相关,与降水呈低度正相关,相关程度及显著性水平在空间分布上存在差异,温度对积雪覆盖频率变化的贡献大于降水。  相似文献   

15.
积雪是地表特征的重要参数,对辐射收支、气候和长期天气变化均有重要影响。雪本身又是一个重要的天气现象和水文气象参数,过量的降雪也会带来严重的雪灾,如牧区雪灾、雪崩和融雪洪水灾害等。因此对积雪的监测,尤其是对山区的积雪监测,具有多方面的意义。利用卫星遥感技术监测积雪已有50余年的历史,并已形成了系列业务产品。青藏高原平均海拔超过4 000 m,该地区的积雪具有重要的水文、气候和生态环境意义。由于地形复杂,人迹罕至,地面观测站点稀少,受较强太阳辐射的影响,积雪消融迅速、区域差异消融以及风吹雪等因素导致积雪分布破碎化严重,对使用遥感资料监测该地区的积雪造成的极大的困难和不确定性。随着国内外传感器技术的不断发展,光学和被动微波遥感数据的同步获取技术已经非常成熟,综合利用光学遥感数据高空间分辨率和被动微波数据不受云干扰的特点,结合机器学习、无人机等技术,将环境参数加入反演模型中,有助于提高青藏高原积雪参数反演精度。  相似文献   

16.
赵文宇  刘海隆  王辉  胡伟杰 《冰川冻土》2016,38(6):1510-1517
山区积雪是干旱区气候变化的重要指标因子,积雪日数与积雪分布之间有着密切关系。为了研究天山山区积雪日数空间分布特征,以MODIS8d积雪产品MOD10A2(Terra)和MYD10A2(Aqua)为数据源,首先对数据进行最大化合成,获取新疆天山500m×500m分辨率的年积雪日数,然后分析了2002-2014年13a积雪日的年际变化,并结合DEM数据分析了13a天山多年平均积雪日随高程和坡度的变化特征。结果表明:天山积雪日数分布极为不均,最大年平均积雪日数为193d,13a内天山绝大部分地区年积雪日变化趋势较为稳定,稳定区约占天山总面积的83.92%;在研究时段内天山总积雪日数主要集中在30d以内,其比例约为天山总面积的48%;各个高程带积雪日面积分布差异明显,但总体上积雪日数随着高程的增加而增加;从积雪日数随坡向分布来看,北坡、东北坡、东坡、西坡、西北坡所占面积比例(>30d)相对高于其他坡向。该研究结果对干旱区水资源估算具有参考意义。  相似文献   

17.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号