首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeolitic imidazolate framework-8 (ZIF-8) was evenly loaded on the surface of TiO2 doped with KI, using a solvent synthesis method, in order to produce a ZIF-8@TiO2 (KI) adsorption photocatalyst with good adsorption and photocatalytic properties. The samples were characterized by XRD, SEM, EDX, XPS, BET and UV-Vis. The photocatalytic efficiency of the material was obtained by photocatalytic tests. The results indicate that the doping with I inhibited the grain growth and reduced the crystallite size of TiO2, reduced the band gap width and improved the utilization rate for light. TiO2 (KI) was a single crystal of anatase titanium dioxide. The combination of ZIF-8 and TiO2 (KI) improved the specific surface area and increased the reaction site. The ZIF-8@TiO2 (KI) for Congo red was investigated to validate its photocatalytic performance. The optimal concentration of Congo red solution was 30 mg/L, and the amount of catalyst was proportional to the degradation efficiency. The degradation efficiency of ZIF-8@TiO2 (5%KI) was 76.42%, after being recycled four times.  相似文献   

2.
Global accessibility to clean water has stressed the need to develop advanced technologies for the removal of toxic organic and inorganic pollutants and pathogens from wastewater to meet stringent discharge water quality limits. Conventionally, the high separation efficiencies, relative low costs, small footprint, and ease of operation associated with integrated photocatalytic-membrane (IPM) technologies are gaining an all-inclusive attention. Conversely, photocatalysis and membrane technologies face some degree of setbacks, which limit their worldwide application in wastewater settings for the treatment of emerging contaminants. Therefore, this review elucidated titanium dioxide (TiO2), based on its unique properties (low cost, non-toxicity, biocompatibility, and high chemical stability), to have great potential in engineering photocatalytic-based membranes for reclamation of wastewater for re-use. The environmental pathway of TiO2 nanoparticles, membranes and configuration types, modification process, characteristics, and applications of IPMs in water settings are discussed. Future research and prospects of magnetized TiO2-based membrane technology is highlighted as a viable water purification technology to mitigate fouling in the membrane process and photocatalyst recoverability. In addition, exploring life cycle assessment research would also aid in utilizing the concept and pressing for large-scale application of this technology.  相似文献   

3.
The elimination of antibiotics occurring in the natural environment has become a great challenge in recent years. Among other techniques, the photocatalytic degradation of this type of pollutant seems to be a promising approach. Thus, the search for new photoactive materials is currently of great importance. The present study concerns the sol–gel synthesis of mono, binary and ternary TiO2-based materials, which are used as active photocatalysts. The main goal was to evaluate how the addition of selected components—zirconium dioxide (ZrO2) and/or zinc oxide (ZnO)—during the synthesis of TiO2-based materials and the temperature of thermal treatment affect the materials’ physicochemical and photocatalytic properties. The fabricated mixed oxide materials underwent detailed physicochemical analysis, utilizing scanning-electron microscopy (SEM), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDS), low-temperature N2 sorption (BET model), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The synthesized mixed oxide materials were used as photocatalysts in the heterogeneous photodegradation of tetracycline (TC). The physicochemical properties of the fabricated photocatalysts, including morphology, crystalline and textural structure, as well as the pH of the reaction system in the photocatalytic tests, were taken into account in determining their photo-oxidation activity. LC–MS/MS analysis was used to identify the possible degradation products of the selected antibiotic.  相似文献   

4.
Photocatalytic degradation of organic pollutants in water is a highly efficient and green approach. However, the low quantum efficiency is an intractable obstacle to lower the photocatalytic efficiency of photocatalysts. Herein, the TiO2/ZnO heterojunction thin films combined with surface oxygen vacancies (OVs) were prepared through magnetron sputtering, which was designed to drive rapid bulk and surface separation of charge carriers. The morphology and structural and compositional properties of films were investigated via different techniques such as SEM, XRD, Raman, AFM, and XPS. It has been found that by controlling the O2/Ar ratio, the surface morphology, thickness, chemical composition, and crystal structure can be regulated, ultimately enhancing the photocatalytic performance of the TiO2/ZnO heterostructures. In addition, the heterojunction thin film showed improved photocatalytic properties compared with the other nano-films when the outer TiO2 layer was prepared at an O2/Ar ratio of 10:35. It degraded 88.0% of Rhodamine B (RhB) in 90 min and 90.8% of RhB in 120 min. This was attributed to the heterojunction interface and surface OVs, which accelerated the separation of electron–hole (e–h) pairs.  相似文献   

5.
Zeolitic imidazolate framework-8 (ZIF-8) was doped with a rare-earth metal, Eu, using a solvent synthesis method evenly on the surface of a mixed-crystal TiO2(Mc-TiO2) structure in order to produce a core–shell structure composite ZIF-8(Eu)@Mc-TiO2 adsorption photocatalyst with good adsorption and photocatalytic properties. The characterisation of ZIF-8(Eu)@Mc-TiO2 was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller analysis (BET) and ultraviolet–visible light differential reflectance spectroscopy (UV-DRs). The results indicated that Eu-doped ZIF-8 was formed evenly on the Mc-TiO2 surface, a core–shell structure formed and the light-response range was enhanced greatly. The ZIF-8(Eu)@Mc-TiO2 for basic fuchsin was investigated to validate its photocatalytic performance. The effect of the Eu doping amount, basic fuchsin concentration and photocatalyst dosage on the photocatalytic efficiency were investigated. The results revealed that, when 5%-Eu-doped ZIF-8(Eu)@Mc-TiO2 (20 mg) was combined with 30 mg/L basic fuchsin (100 mL) under UV irradiation for 1 h, the photocatalytic efficiency could reach 99%. Further, it exhibited a good recycling performance. Thus, it shows certain advantages in its degradation rate and repeatability compared with previously reported materials. All of these factors suggested that, in an aqueous medium, ZIF-8(Eu)@Mc-TiO2 is an eco-friendly, sustainable and efficient material for the photocatalytic degradation of basic fuchsin.  相似文献   

6.
Using butyl titanate and absolute ethanol as raw materials, TiO2 was prepared by a hydrothermal method with different hydrothermal times, and the influences of hydrothermal time on the structure and photocatalytic performance of TiO2 were investigated. The obtained samples were characterized by XRD, SEM, TEM, BET, PL and DRS, separately. The results show that TiO2 forms anatase when the hydrothermal time is 12 h, forms a mixed crystal composed of anatase and rutile when the hydrothermal time is 24 h, and forms rutile when the hydrothermal time is 36 h. With the extension of hydrothermal time, anatase gradually transforms into rutile and the surface area decreases. Although TiO2-24 h and TiO2-36 h show lower photoinduced charge recombination and higher light source utilization, TiO2-12 h exhibits the highest photocatalytic activity owing to its largest surface area (145.3 m2/g). The degradation degree of rhodamine B and tetracycline hydrochloride reach 99.6% and 90.0% after 45 min.  相似文献   

7.
{001}TiO2/TiOF2 photocatalytic composites with a high activity {001} crystal plane were prepared by one-step hydrothermal methods using butyl titanate as a titanium source and hydrofluoric acid as a fluorine source. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), raman spectroscopy, N2 adsorption-desorption curve (BET), UV-Vis diffuse absorption spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy (PL) were used to evaluate the structure, morphology, specific surface area, optical properties, and photocarrier separation ability of {001}TiO2/TiOF2. Ammonia nitrogen was taken as the target pollutant, and the degradation performance of the catalyst was investigated. The results show that hydrofluoric acid improves the content of {001} crystal plane of TiO2 with high activity; it also improves the specific surface area and dispersion of the composite material and adjusts the ratio of {001}TiO2 to TiOF2 in the composite material to enhance the absorption capacity of the composite material and reduce the band gap width of the composite material. The degradation rate of ammonia nitrogen by 100 mg F15 is 93.19% when the initial concentration of ammonia nitrogen is 100 mg/L and pH is 10. Throughout the reaction process, the {001}TiO2/TiOF2 composite produces superoxide anion radical (·O2) and hydroxyl radical (·OH) to oxidize NH3·H2O and generate N2 accompanied by a small amount of NO3 and NO2.  相似文献   

8.
SiO2-TiO2-C aerogel photocatalysts with different carbon loadings were synthesized by using sol-gel chemistry. The anatase crystal and nonmetal carbon dopant were introduced during the sol preparation and formed by hydrothermal treatment, which can simultaneously enhance the adsorption ability and visible light photo-activity. A high surface area (759 g cm−3) SiO2-TiO2-C aerogel composite can remove up to 80% tetracycline hydrochloride within 180 min under visible light. The characterization of the gel structures shows that the homogeneous dispersion of O, Si, Ti and C in the skeleton, indicating that hydrothermal synthesis could provide a very feasible way for the preparation of composite materials. n(C):n(Ti) molar ratio of 3.5 gives the best catalytic performance of the hybrid aerogel, and the cyclic test still confirms over 60% degradation activity after seven use cycles. All catalysis reaction followed the pseudo-first-order rate reaction with high correlation coefficient. The electrons and holes in the compound could be effectively restrained with doping proper amount of C, and ESR results indicate that the oxidation process was dominated by the hydroxyl radical (•OH) and superoxide radical (•O2) generated in the system.  相似文献   

9.
Tetracycline (TC) is widely used in production and in life. The high volume of its use and the difficulty of its disposal have become the most important causes of environmental pollution. A suitable method needs to be found to solve this problem. In this study, the Ti/Ta2O5-IrO2 electrode was characterized for its surface morphology and crystal composition. The electrochemical catalytic ability of the Ti/Ta2O5-IrO2 electrode was investigated using LSV and CV tests. The electrochemical degradation of tetracycline (TC) in water with a Ti/Ta2O5-IrO2 anode was investigated. The main influence factors, such as current density (2.5–10 mA/cm2), electrode spacing (20–40 mm), initial TC concentration (20–80 mg/L) and initial solution pH (4.74–9.48) were analyzed in detail and their influences on reaction kinetics was summed up. The removal rate increased along with the increasing current density, decreasing initial TC concentration and decreasing of electrode distance under the experimental conditions. The optimum pH was 4.74. UV–vis, total organic carbon (TOC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses were used to reveal the mechanism of TC degradation. Nine main intermediates were identified, and the degradation pathways were proposed. A new insight has been postulated for the safe and efficient degradation of TC using the Ti/Ta2O5-IrO2 electrode.  相似文献   

10.
Photoassisted synthesis is as a highly appealing green procedure for controlled decoration of semiconductor catalysts with co-catalyst nanoparticles, which can be carried out without the concourse of elevated temperatures, external chemical reducing agents or applied bias potential and in a simple slurry reactor. The aim of this study is to evaluate the control that such a photoassisted method can exert on the properties of ruthenium nanoparticles supported on TiO2 by means of the variation of the incident irradiance and hence of the photodeposition rate. For that purpose, different Ru/TiO2 systems with the same metal load have been prepared under varying irradiance and characterized by means of elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The photocatalytic activity of the so-obtained materials has been evaluated by using the degradation of formic acid in water under UV-A light. Particles with size around or below one nanometer were obtained, depending on the irradiance employed in the synthesis, with narrow size distribution and homogeneous dispersion over the titania support. The relation between neutral and positive oxidation states of ruthenium could also be controlled by the variation of the irradiance. The obtained photocatalytic activities for formic acid oxidation were in all cases higher than that of undecorated titania, with the sample obtained with the lowest irradiation giving rise to the highest oxidation rate. According to the catalysts characterization, photocatalytic activity is influenced by both Ru size and Ru0/Ruδ+ ratio.  相似文献   

11.
In this study, CN-TiO2 was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO2-400 sample, CN-TiO2/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO2/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO2/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO2/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample.  相似文献   

12.
The main goal of the study was the hydrothermal-assisted synthesis of TiO2-ZnO systems and their subsequent use in photoactive processes. Additionally, an important objective was to propose a method for synthesizing TiO2-ZnO systems enabling the control of crystallinity and morphology through epitaxial growth of ZnO nanowires. Based on the results of X-ray diffraction analysis, in the case of materials containing a small addition of ZnO (≥5 wt.%), no crystalline phase of wurtzite was observed, proving that a high amount of modified titanium dioxide can inhibit the crystallization of ZnO. The transmission electron microscopy (TEM) results confirmed the formation of ZnO nanowires for systems containing ≥ 5% ZnO. Moreover, for the synthesized systems, there were no significant changes in the band gap energy. One of the primary purposes of this study was to test the TiO2-ZnO system in the photodegradation process of 4-chlorophenol using low-power UV-LED lamps. The results of photo-oxidation studies showed that the obtained binary systems exhibit good photodegradation and mineralization efficiency. Additionally, it was also pointed out that the dye-sensitized solar cells can be a second application for the synthesized TiO2-ZnO binary systems.  相似文献   

13.
The replacement of oxide semiconducting TiO2 nano particles with one dimensional TiO2 nanotubes (TNTs) has been used for improving the electron transport in the dye-sensitized solar cells (DSSCs). Although use of one dimensional structure provides the enhanced photoelectrical performance, it tends to reduce the adsorption of dye on the TiO2 surface due to decrease of surface area. To overcome this problem, we investigate the effects of TiCl4 treatment on DSSCs which were constructed with composite films made of TiO2 nanoparticles and TNTs. To find optimum condition of TNTs concentration in TiO2 composites film, series of DSSCs with different TNTs concentration were made. In this optimum condition (DSSCs with 10 wt% of TNT), the effects of post treatment are compared for different TiCl4 concentrations. The results show that the DSSCs using a TiCl4 (90 mM) post treatment shows a maximum conversion efficiency of 7.83% due to effective electron transport and enhanced adsorption of dye on TiO2 surface.  相似文献   

14.
The development of visible-light active titanium dioxide is one of the key challenges in photocatalysis that stimulates the development of TiO2-based composite materials and methods for their synthesis. Here, we report the use of pristine and Pt-modified dark titanium dioxide prepared via pulsed laser ablation in liquid (Nd:YAG laser, 1064 nm, 7 ns) for photocatalytic hydrogen evolution from alcohol aqueous solutions. The structure, textural, optical, photoelectrochemical, and electrochemical properties of the materials are studied by a complex of methods including X-ray diffraction, low-temperature nitrogen adsorption, electrophoretic light scattering, diffuse reflection spectroscopy, photoelectrochemical testing, and electrochemical impedance spectroscopy. Both the thermal treatment effect and the effect of modification with platinum on photocatalytic properties of dark titania materials are studied. Optimal compositions and experimental conditions are selected, and high photocatalytic efficiency of the samples in the hydrogen evolution reaction (apparent quantum yield of H2 up to 0.38) is demonstrated when irradiated with soft UV and blue LED, i.e., 375 and 410 nm. The positive effect of low platinum concentrations on the increase in the catalytic activity of dark titania is explained.  相似文献   

15.
A TiO2@Cu2O semiconductor heterostructure with better photochemical response compared to TiO2 was obtained using an electrochemical deposition method of Cu2O on the surface of TiO2 nanotubes. The choice of 1D nanotubes was motivated by the possibility of achieving fast charge transfer, which is considered best suited for photochemical applications. The morphology and structural properties of the obtained heterojunction were determined using standard methods —SEM and Raman spectroscopy. Analysis of photoelectrochemical properties showed that TiO2@Cu2O heterostructures exhibit better properties resulting from an interaction with sunlight than TiO2. A close relationship between the morphology of the heterostructures and their photoproperties was also demonstrated. Investigations representing a combination of photoelectrochemical cells for hydrogen production and photocatalysis—photoelectrocatalysis—were also carried out and confirmed the observations on the photoproperties of heterostructures. Analysis of the Mott–Schottky plots as well as photoelectrochemical measurements (Iph-V, Iph-t) showed that TiO2 as well as, unusually, Cu2O exhibit n-type conductivity. On this basis, a new energy diagram of the TiO2@Cu2O system was proposed. It was found that TiO2@Cu2O n-n type heterostructure prevents the processes of photocorrosion of copper(I) oxide contained in a TiO2-based heterostructure.  相似文献   

16.
The photocatalytic reduction of carbon dioxide to renewable fuel or other valuable chemicals using solar energy is attracting the interest of researchers because of its great potential to offer a clean fuel alternative and solve global warming problems. Unfortunately, the efficiency of CO2 photocatalytic reduction remains not very high due to the fast recombination of photogenerated electron–hole and small light utilization. Consequently, tremendous efforts have been made to solve these problems, and one possible solution is the use of heterojunction photocatalysts. This review begins with the fundamental aspects of CO2 photocatalytic reduction and the fundamental principles of various heterojunction photocatalysts. In the following part, we discuss using TiO2 heterojunction photocatalysts with other semiconductors, such as C3N4, CeO2, CuO, CdS, MoS2, GaP, CaTiO3 and FeTiO3. Finally, a concise summary and presentation of perspectives in the field of heterojunction photocatalysts are provided. The review covers references in the years 2011–2021.  相似文献   

17.
In this study, efficient commercial photocatalyst (Degussa P25) nanoparticles were effectively dispersed and stabilized in alginate, a metal binding biopolymer. Taking advantage of alginate’s superior metal chelating properties, copper nanoparticle-decorated photocatalysts were developed after a pyrolytic or calcination-sintering procedure, yielding ceramic beads with enhanced photocatalytic and mechanical properties, excellent resistance to attrition, and optimized handling compared to powdered photocatalysts. The morphological and structural characteristics were studied using LN2 porosimetry, SEM, and XRD. The abatement of an organic pollutant (Methyl Orange, MO) was explored in the dark and under UV irradiation via batch experiments. The final properties of the photocatalytic beads were defined by both the synthesis procedure and the heat treatment conditions, allowing for their further optimization. It was found that the pyrolytic carbon residuals enabled the adhesion of the TiO2 nanoparticles, acting as binder, and increased the MO adsorption capacity, leading to increased local concentration in the photocatalyst vicinity. Well dispersed Cu nanoparticles were also found to enhance photocatalytic activity. The prepared photocatalysts exhibited increased MO adsorption capacity (up to 3.0 mg/g) and also high photocatalytic efficiency of about 50% MO removal from water solutions, reaching an overall MO rejection of about 80%, at short contact times (3 h). Finally, the prepared photocatalysts kept their efficiency for at least four successive photocatalytic cycles.  相似文献   

18.
High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 µm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.  相似文献   

19.
In present work, we examine the photocatalytic properties of S-doped TiO2 (S1, S2) compared to bare TiO2 (S0) in present work. The photocatalytic tests were performed in alkaline aqueous solutions (pH = 10) of three differently substituted phenols (phenol (I), 4,4′-isopropylidenebisphenol (II), and 4,4′-isopropylidenebis(2,6-dibromophenol) (III)). The activity of the catalysts was evaluated by monitoring I, II, III degradation in the reaction mixture. The physicochemical properties (particle size, ζ-potential, Ebg, Eu, E0cb, E0vb, σo, KL) of the catalysts were established, and we demonstrated their influence on degradation reaction kinetics. Substrate degradation rates are consistent with first-order kinetics. The apparent conversion constants of the tested compounds (kapp) in all cases reveal the sulfur-loaded catalyst S2 to show the best photocatalytic activity (for compound I and II S1 and S2 are similarly effective). The different efficiency of photocatalytic degradation I, II and III can be explained by the interactions between the catalyst and the substrate solution. The presence of bromine substituents in the benzene ring additionally allows reduction reactions. The yield of bromide ion release in the degradation reaction III corresponds to the Langmuir constant. The mixed oxidation-reduction degradation mechanism results in higher degradation efficiency. In general, the presence of sulfur atoms in the catalyst network improves the degradation efficiency, but too much sulfur is not desired for the reduction pathway.  相似文献   

20.
WO3-decorated TiO2 nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H2O2 and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W6+) in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO2 during anodization to produce a uniform nanotubular structure of TiO2 film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO2 after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor (92.0) exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg2+ to adsorb onto the catalyst surface to undergo reduction to Hg0. The incorporation of WO3 species onto TiO2 nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO2 to the conduction band of WO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号