首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
高山/亚高山森林灌木层植物凋落物的分解对于系统物质循环等过程具有重要意义, 并可能受到冬季不同厚度雪被斑块下冻融格局的影响。该文采用凋落物分解袋法, 研究了高山森林典型灌层植物华西箭竹(Fargesia nitida)和康定柳(Salix paraplesia)凋落物在沿林窗-林下形成的冬季雪被厚度梯度(厚型雪被斑块、较厚型雪被斑块、中型雪被斑块、薄型雪被斑块、无雪被斑块)上在第一年不同关键时期(冻结初期、冻结期、融化期、生长季节初期和生长季节后期)的质量损失特征。在整个冻融季节, 华西箭竹和康定柳凋落叶的平均质量损失分别占全年的(48.78 ± 2.35)%和(46.60 ± 5.02)%。冻融季节雪被覆盖斑块下凋落叶的失重率表现出厚型雪被斑块大于薄型雪被斑块的趋势,而生长季节无雪被斑块的失重率明显较高。尽管如此, 华西箭竹凋落物第一年分解表现出随冬季雪被厚度增加而增加的趋势, 但康定柳凋落物第一年失重率以薄型雪被斑块最高, 而无雪被斑块最低。同时, 相关分析表明冻融季节凋落叶的失重率与平均温度和负积温呈极显著正相关, 生长季节凋落叶的失重率与所调查的温度因子并无显著相关关系, 但全年凋落物失重率与平均温度和正/负积温均显著相关。这些结果清晰地表明, 未来冬季变暖情境下高山森林冬季雪被格局的改变将显著影响灌层植物凋落物分解, 影响趋势随着物种的差异具有明显差异。  相似文献   

2.
亚高山森林冬季不同厚度雪被斑块下显著的冻融格局差异可能对凋落物分解过程中钾(K)和钠(Na)的动态具有重要影响, 然而已有研究还不足以清晰地认识这一过程。以川西亚高山森林6种代表性树种凋落物为研究对象, 采用凋落物网袋法, 探讨冬季不同厚度雪被斑块下雪被形成期、覆盖期和融化期凋落物分解过程中K和Na元素释放或富集的特征。整个雪被覆盖时期, 6种凋落物分解过程中Na均表现为富集特征, 且以覆盖期最为明显; 而K表现为释放特征, 以雪被融化期释放率最大。相对于其他雪被斑块, 厚型和中型雪被斑块下凋落物K释放率相对较高; 除康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)外, 其他物种凋落物在厚型和中型雪被斑块下Na富集率较高。同时, 统计分析结果表明, 物种和雪被显著影响冬季不同关键时期凋落物K和Na元素动态。除红桦(Betula albosinensis)和方枝柏(Sabina saltuaria)凋落物外, 温度因子与凋落物K和Na动态变化呈显著正相关。这些结果表明气候变暖情景下冬季雪被覆盖的减小将抑制亚高山森林冬季凋落物分解过程中K和Na元素的释放, 但是释放程度受凋落物质量和雪被覆盖时期的显著影响。  相似文献   

3.
季节性雪被对高山森林凋落物分解的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
季节性雪被可能对高山森林凋落物分解产生重要影响, 但一直没有深入的研究。该文采用凋落物分解袋法, 于2010-2012年雪被覆盖下几个关键时期(冻结初期、深冻期和融化期)以及生长季节, 研究了川西高山森林代表性树种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)和方枝柏(Sabina saltuaria)凋落叶在不同厚度冬季雪被下的分解动态。经过两年的分解, 不同雪被覆盖下岷江冷杉凋落物分解率为33.98%-39.55%, 红桦为46.49%-48.22%, 四川红杉为42.30%-44.93%, 方枝柏为40.34%-43.84%。相对于无雪被覆盖环境, 厚型雪被覆盖均小幅提高了4种凋落物两年的失重率(1.57%-5.57%)。3个针叶树种(岷江冷杉、四川红杉和方枝柏) Olson凋落物分解系数k均以厚型雪被覆盖最大, 薄型雪被覆盖最小, 而阔叶树种红桦分解系数k则表现为无雪被>薄型雪被>较厚型雪被>厚型雪被>中型雪被。尽管在第二年生长季中雪被对红桦凋落物分解的促进作用不明显, 但雪被覆盖明显促进了两年各个关键时期岷江冷杉、四川红杉和方枝柏凋落物的分解。第一年雪被期凋落物分解对当年分解总量的贡献达42.5%-65.5%, 季节性雪被变化明显改变了凋落物冬季分解格局, 对深冻期凋落物分解过程影响尤为显著。综上所述, 当前气候变化情景下冬季雪被的减少可能减缓该区森林凋落物分解过程, 但相对于易分解的阔叶凋落物, 针叶凋落物的响应特征可能更为强烈。  相似文献   

4.
土壤温度和水分对长白山不同森林类型土壤呼吸的影响   总被引:54,自引:11,他引:54  
在实验室条件下,将不同含水量的3种森林类型的土柱分别置于0、5、15、25和35℃条件下,进行土壤呼吸测定.结果表明,在0~35℃范围内。土壤呼吸速率与温度呈正相关.在一定含水量范围内(0.21~0.37kg·kg^-1),土壤呼吸随含水量的增加而升高,当含水量超出该范围,土壤呼吸速率则随含水量的变化而降低.土壤温度和水分对土壤呼吸作用存在明显的交互作用.不同森林类型土壤呼吸作用强弱存在显著差异,大小顺序为阔叶红松林>岳桦林>云冷杉暗针叶林.阔叶红松林土壤呼吸作用的最佳条件是土壤温度35℃、含水量0.37kg·kg^-1;云冷杉暗针叶林下的山地棕色针叶林土壤呼吸作用的最佳条件是25℃、0.21kg·kg^-1;岳桦林土壤呼吸作用的最佳条件是35℃、含水量0.37kg·kg^-1。但是.由于长白山阔叶红松林、云冷杉林和岳桦林处在不同的海拔带上,同期不同森林类型土壤温度各不相同,相差4~5℃,所以野外所测的同期山地棕色针叶林土呼吸速率应低于暗棕色森林土呼吸速率,山地生草森林土呼吸速率应高于山地棕色针叶林土的呼吸速率.  相似文献   

5.
季节性雪被可能通过冻结、淋溶以及冻融循环等对高山森林凋落物水溶性和有机溶性组分含量产生影响.本文采用凋落物分解袋法,以川西高山森林典型乔木(四川红杉、岷江冷杉、红桦、方枝柏)和灌木(高山杜鹃、康定柳)凋落物为研究对象,研究了雪被覆盖不同时期(雪被形成期、雪被覆盖期和雪被融化期)和雪被厚度(厚型雪被、中型雪被、薄型雪被和无雪被)下凋落物水溶性和有机溶性组分含量的动态变化特征.结果表明: 在一个冬季的分解过程中,6种凋落物水溶性组分含量在雪被形成期和融化期降低而雪被覆盖期增加,但除高山杜鹃凋落物有机溶性组分含量在雪被覆盖期增加外,其他5种凋落物有机溶性组分含量在整个冬季呈降低趋势.相对于凋落物有机溶性组分含量,不同厚度雪被斑块对凋落物水溶性组分含量变化的影响更大,且主要表现在雪被形成期和雪被覆盖期.相对于其他雪被斑块,薄型雪被斑块更加显著地促进了高山柳和高山杜鹃凋落物水溶性组分含量降低,但显著抑制了方枝柏凋落物水溶性组分含量降低,而其他凋落物水溶性组分含量变化在不同斑块间无显著差异.冬季高山森林雪被对凋落物水溶性和有机溶性组分含量的影响主要受控于凋落物质量.  相似文献   

6.
高山森林冬季不同厚度雪被格局可能通过影响凋落物的分解过程中酸溶性和酸不溶性组分特征,改变凋落物分解过程,但缺乏必要关注。采用凋落物分解袋法,研究了高山森林林窗中央至林下形成的天然雪被厚度梯度(厚型雪被、中型雪被、薄型雪被和无雪被)覆盖下,6种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albo-sinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落物在不同关键时期(雪被形成期、雪被覆盖期和雪被融化期)的酸溶性组分和酸不溶性组分变化特征。经历一个冬季的分解后,6种凋落物酸溶性组分绝对含量呈降低趋势,除红桦外5种凋落物酸不溶性组分绝对含量呈增加趋势。不同厚度雪被显著影响雪被覆盖期和融化期凋落物酸不溶性和酸溶性组分绝对变化量;其中方枝柏、红桦和康定柳凋落物酸不溶性组分增加量在厚型雪被下显著高于其它雪被覆盖;而相对于阔叶凋落物酸溶性组分变化量在薄型雪被和无雪被梯度达到最大值,针叶凋落物酸溶性组分在厚型雪被下具有最大的变化量。一个冬季分解结束后,表征6种凋落物酸溶性和酸不溶性组分含量相对比例的LCI指数(Lignocellulose index)总体升高,雪被对LCI指数的影响主要表现在雪被覆盖期和融化期,且方枝柏、岷江冷杉和康定柳凋落物LCI在冬季分解后均在厚型雪被达到最高值。同时统计分析结果表明,物种极显著影响冬季不同阶段凋落物酸溶性和酸不溶性组分的变化。这些结果意味着气候变暖情景下,高山森林冬季雪被和冻融格局的改变将显著影响凋落物分解过程中酸溶性、酸不溶性组分以及LCI指数代表的抵抗性组分结构的变化,且影响趋势受到凋落物质量的调控。  相似文献   

7.
气候变化已经并将持续改变寒冷生物区季节性雪被厚度和覆盖时间,雪被厚度的减少可能影响高山森林凋落物分解,尤其是其早期分解过程中易分解碳的释放。该文研究了川西高山森林雪被去除处理后优势树种岷江冷杉(Abiesfargesii var.faxoniana)凋落叶总有机碳、热水/冷水可溶性有机碳、非结构性碳(可溶性糖、淀粉)在冬季(雪被形成期、覆盖期、融化期)和生长季(初期、中期、后期)的释放规律。结果表明:(1)经过一年的分解,对照和雪被去除处理的凋落叶质量残留量分别为76.4%和86.2%,总有机碳残留量分别为60.5%和74.8%。(2)经过一个冬季分解后,雪被去除处理降低了凋落叶热水溶性有机碳和可溶性糖的释放,而增加了总有机碳、可溶性有机碳、非结构性碳和淀粉的富集。(3)经过生长季分解后,雪被去除处理降低了凋落叶易分解碳释放,其中总有机碳、热水溶性有机碳、可溶性有机碳、非结构性碳、可溶性糖和淀粉的释放分别降低了36.3%、0.8%、43.7%、28.3%、21.7%和33.7%。偏最小二乘法分析表明,岷江冷杉凋落叶易分解碳释放受土壤冻融循环次数、脲酶活性、土壤温度和可溶性有机碳含量影响...  相似文献   

8.
土壤动物对高寒森林凋落物养分元素动态具有重要影响, 但这种影响受控于凋落物质量及环境条件。为了解土壤动物对高寒森林凋落物不同分解时期凋落物中N和P元素动态的影响, 采用凋落物分解袋的方法, 于凋落物第一年分解的不同时期, 即冻结前期、冻结期、融化期、生长季节初期、生长季节中期和生长季节末期, 研究了3.00和0.04 mm孔径凋落物袋中川西亚高山和高山森林的代表性植物——康定柳(Salix paraplesia)、方枝柏(Sabina saltuaria)、红桦(Betula albosinensis)和岷江冷杉(Abies fargesii var. faxoniana)凋落物中的N和P元素动态特征。结果表明: 康定柳和红桦凋落物中的N元素呈现出释放—富集—释放的模式, 方枝柏、岷江冷杉凋落物中的N元素则表现为释放—富集模式; 凋落物P元素总体表现为释放模式, 但4种植物凋落物均在生长季节中期具有明显的富集过程; 从凋落物分解的第一年来看, 土壤动物明显促进了4种植物凋落物N的释放, 而抑制了P的释放; 不同时期土壤动物对凋落物中N和P释放量的影响存在显著差异, 且分别与正积温呈极显著正相关和极显著负相关关系; 相对于阔叶植物凋落物, 土壤动物对针叶植物凋落物中N和P元素动态的影响更为显著。这些结果为深入了解高寒森林生态系统土壤动物与凋落物分解等物质循环过程的相互联系具有重要意义。  相似文献   

9.
雪被是影响高海拔森林凋落物分解的重要生态因子,其是否影响到生长季节与非生长季节凋落物中的P元素释放,尚未量化。为了量化季节性雪被对高海拔森林凋落物分解过程中P元素释放的影响,于2010年10月至2012年10月间,在青藏高原东缘川西高海拔森林不同厚度冬季雪被斑块下,设置凋落物分解袋实验。检测该地区代表性树种岷江冷杉(Abies faxoniana)、红桦(Betula albo-sinensis)、四川红杉(Larix mastersiana)和方枝柏(Sabina saltuaria)凋落叶在雪被覆盖不同关键时期(雪被形成前期、完全覆盖期和消融期)以及生长季节的P元素动态。结果表明,凋落物质量与雪被厚度均显著影响了P元素的释放过程。雪被覆盖时期凋落物P元素释放率表现为有雪被覆盖大于无雪被覆盖,而生长季节中除岷江冷杉外的其他3种凋落物P元素释放率均为无雪被覆盖下最大。相对于无雪被覆盖斑块,冬季雪被的存在提供了保护绝缘层,促进凋落物P元素释放,提高了各物种冬季P元素释放贡献率。这些结果表明,全球变化情景下的雪被减少可能减缓高海拔森林凋落物P元素的释放过程,改变森林土壤P元素水平。所以在研究高寒、高海拔地区全球气候变化下生态系统功能的工作中,应注重雪被这一异质性环境因子对生态系统功能的影响。  相似文献   

10.
气候变化引起的雪被变化会深刻地影响森林凋落物的分解过程.本研究采用人工控雪处理(对照、增雪、除雪)模拟研究雪被变化对两种温带树种——水曲柳和兴安落叶松凋落叶分解动态的影响. 为期一年的分解试验表明: 不同控雪处理下水曲柳和落叶松的凋落叶年分解率的变化范围分别为51.3%~57.4%和21.7%~31.4%;两者的分解系数(k)变化范围分别为0.048~0.057和0.022~0.030,其中增雪处理的k值最大、除雪处理的k值最小.与对照相比,增雪处理下水曲柳凋落叶50%和95%分解的时间分别缩短了1.1月和4.2月,落叶松则分别缩短了3.7月和15.5月;相反,除雪处理下相应的分解时间分别延长了1.8月和6.4月(水曲柳)及5.0月和21.1月(落叶松).此外,凋落叶分解率与树种、雪深、分解时间、土壤温度等密切相关,但其主要影响因子随分解阶段而异,表现为雪被期主要受土壤温度影响,而随后的无雪期主要受凋落叶初始质量的影响.本研究突显了雪被变化对凋落叶分解有显著的瞬时效应和延迟效应.  相似文献   

11.
季节性雪被下显著的冻融格局差异可能对干旱区山地森林凋落叶分解过程产生重要影响, 但一直未见深入研究。2015年10月至2016年10月, 采用凋落物分解袋法, 研究了天山典型树种雪岭云杉(Picea schrenkiana)凋落叶在季节性雪被覆盖下的3个关键时期(冻融期、深冻期、融冻期)以及生长季(生长季早期和生长季末期)的分解动态和碳、氮、磷释放特征。结果表明: (1)经过一年的分解, 不同雪被厚度下雪岭云杉凋落叶分解率为24.6%-29.2%, 且存在显著性差异。分解系数k值厚雪被覆盖最大, 无雪被覆盖最小。(2)冬季雪被覆盖期雪岭云杉凋落叶分解对当年分解总量的贡献达46.0%- 48.5%, 其中对冻融期凋落叶分解影响较为明显。(3)随着凋落叶的分解, 雪岭云杉凋落叶氮含量总体呈增加趋势; 碳含量和碳氮比大致呈下降趋势, 在深冻期和生长季末期不同雪被处理下碳含量呈显著性差异; 而凋落叶磷含量呈不规则变化趋势, 且在冻融期和融冻期不同雪被厚度下呈显著性差异。(4)整个雪被覆盖季节凋落叶氮元素表现为富集, 碳和磷元素表现为释放; 其中, 在融冻期薄雪被和中雪被处理下碳元素富集率最大, 在冻融期薄雪被、中雪被和厚雪被处理下, 融冻期无雪被和厚雪被下以及生长季早期中雪被和厚雪被下氮元素富集率最大, 而雪被对凋落叶磷释放的影响不显著。  相似文献   

12.
高山林线交错带高山杜鹃的凋落物分解   总被引:2,自引:0,他引:2  
凋落物分解是维持生态系统生产力、养分循环、土壤有机质形成的关键生态过程。高山林线交错带是陆地生态系统中对气候变化响应的敏感区域。季节变化和海拔梯度上的植被类型差异可能会影响该区域凋落物的分解,进而对高山生态系统的碳氮循环产生重要影响。采用凋落物分解袋的方法,研究了川西高山林线交错带优势种高山杜鹃(Rhododendron lapponicum)凋落叶在雪被期和生长季的分解特征。结果显示:(1)季节变化和植被类型对高山杜鹃凋落物的分解均具有显著影响(P0.05),凋落叶的质量损失主要发生在生长季且在高山林线最大,暗针叶林中雪被期的质量损失略高于生长季,但差异不显著;(2)林线交错带上高山杜鹃凋落叶分解缓慢,一年干物质失重率为9.62%,拟合分解系数k为0.145;(3)高山杜鹃凋落叶的质量变化主要体现在纤维素降解显著且集中在雪被期,木质素无明显降解,在高山林线上C/N、C/P、木质素/N变化幅度较小且C、N、P的释放表现得稳定而持续。结果表明,季节性雪被对林线交错带内高山杜鹃分解的影响不仅局限在雪被期内,雪被融化期间频繁的冻融作用和雪融水淋洗作用可能会促进高山杜鹃凋落物在生长季初期的分解。总的来看,在气候变暖的情景下,雪被的缩减、生长季的延长和高山杜鹃群落的扩张可能加速高山林线交错带高山杜鹃凋落物的分解。  相似文献   

13.
控雪处理下红松和蒙古栎凋落叶分解动态   总被引:1,自引:0,他引:1       下载免费PDF全文
气候变化导致的冬季雪被格局变化将改变地表水热环境及分解者活性, 从而显著影响高寒地区森林凋落物分解过程。2014-2016年采用凋落物分解袋法, 研究了帽儿山森林生态站人工林控雪模拟试验下红松(Pinus koraiensis)和蒙古栎(Quercus mongolica)的凋落叶于雪被期和无雪期不同阶段的分解动态。控雪试验包括增雪、除雪和对照3个处理。结果发现: 树种、控雪处理、分解阶段以及环境因子(凋落物层平均温度、冻融循环次数、有机层全氮、全磷含量等)均影响着凋落叶分解率。分解试验的两年内, 不同控雪处理下红松凋落叶的分解率为52.1%-54.5%, 蒙古栎为53.9%-59.1%。两种凋落叶的分解系数均以增雪处理最大, 除雪处理最小。此外, 控雪处理改变了两种凋落叶雪被期或无雪期对分解总量的贡献率。与对照相比, 增雪处理使红松和蒙古栎凋落叶雪被期的分解贡献率分别提高9.1%和10.4%; 而除雪处理使两种凋落叶无雪期的分解贡献率分别提高10.4%和12.7%。因此, 由气候变化带来的冬季雪被改变不但会显著影响温带森林凋落叶的分解过程, 而且会改变雪被期和无雪期的分解量对年分解总量的贡献率。  相似文献   

14.
亚高山森林凋落叶腐殖化是联系植物与土壤碳库和养分库的重要通道, 在冬季可能受到雪被斑块的影响。该文采用凋落物网袋法, 于2012年11月-2013年4月研究了川西亚高山森林不同厚度雪被斑块(厚雪被、中雪被、薄雪被和无雪被)下优势树种岷江冷杉(Abies faxoniana)、方枝柏(Sabina saltuaria)、四川红杉(Larix mastersiana)、红桦(Betula albo-sinensis)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落叶在不同雪被关键期(雪被形成期、雪被覆盖期和雪被融化期)的腐殖化特征。结果表明: 亚高山森林冬季不同厚度雪被斑块下6种凋落叶均保持一定程度的腐殖化, 其中红桦凋落叶腐殖化度最大, 达4.45%-5.67%; 岷江冷杉、高山杜鹃、康定柳、四川红杉和方枝柏凋落叶腐殖化度分别为1.91%-2.15%、1.14%-2.03%、1.06%-1.97%、0.01%-1.25%和0.39%-1.21%。凋落叶腐殖质在雪被形成期、融化期和整个冬季累积, 且累积量随雪被厚度减小而增加, 但在雪被覆盖期降解, 且降解量随雪被厚度减小而增大。相关分析结果表明, 亚高山森林凋落叶前期腐殖化主要受凋落叶质量影响, 且与氮和酸不溶性组分呈极显著正相关, 而与碳、磷、水溶性和有机溶性组分呈极显著负相关。表明冬季变暖情景下雪被厚度的减小可能促进亚高山森林凋落叶腐殖化, 但凋落叶腐殖化在不同雪被关键期受雪被斑块和凋落叶质量的调控。  相似文献   

15.
2010年1-5月在川西高原采用人工雪厚度梯度试验(0、30和100 cm),应用网袋分解法对窄叶鲜卑花叶片凋落物进行分解试验,测定了凋落物的分解速率及其养分动态.结果表明:在无雪被覆盖的样地上分解5个月后的凋落物质量损失率为29.9%,而中雪和深雪样地的凋落物质量损失率分别为33.8%和35.2%.分解过程中,凋落物氮存在一定的富集现象,磷处于波动的富集状态,碳质量分数和碳氮比均呈现前期急剧下降后期逐渐上升的趋势.雪被覆盖显著增加了凋落物的质量损失率和氮含量,而对碳和磷含量无显著影响.在川西高原地区,30 cm以上的持续雪被覆盖能够改变凋落物的分解过程,从而可能对土壤营养物质转化和植物群落构建产生实质性的影响.  相似文献   

16.
Tan B  Wu FZ  Yang WQ  Yang YL  Wang A  Kang LN 《应用生态学报》2011,22(10):2553-2559
气候变暖导致的雪被动态格局变化可能深刻影响高山森林生态过程.为了解气候变暖背景下雪被的减少对川西高山森林土壤生态过程的影响,2009年10月19日-2010年5月18日,采用遮雪方法,研究了雪被去除对该区冷杉原始林土壤温度和碳、氮、磷的影响.结果表明:雪被去除加大了土温日变化幅度和冻融循环频次,使土壤冻结和融化时间提前.雪被去除使土壤可溶性碳和可溶性氮、有效磷、铵态氮和硝态氮冬季含量高峰提前到雪被覆盖期;雪被覆盖期至融化期的可溶性碳和氮及硝态氮含量增加,但有效磷和铵态氮含量降低,改变了其组分比例.气候变暖引起的川西高山森林雪被减少将改变土壤外部环境条件,进而影响土壤碳、氮和磷过程.  相似文献   

17.
吴彦  V. G. Onipchenko 《生态学报》2007,27(12):5120-5129
在青藏高原东缘的松潘地区海拔4000 m的高山地带设置5条宽1m、长40~70m的跨山脊南北样带,相邻样带间距为50 m.按1m×1 m面积划分为251个调查样方,于2004~2005年分别进行了地植物学调查、土壤理化性质分析和冬季雪被厚度监测.以物种的相对频度为群落指标,以雪被厚度、土壤厚度、有机质含量、土壤湿度(0.25mm及2mm)、全磷、全钾、铵态氮、水解性酸、pH及坡度等参数为环境指标,运用PC-ORD软件的TWINSPAN对植物群落进行分类、CCA进行排序.结果表明,由南坡向北坡可以划分为亚菊——金露梅高山灌丛草甸、细柄茅——苔草高山草甸、细柄茅、苔草——矮柳高山灌丛草甸群落和杜鹃高山灌丛群落等4种群落类型.由南坡向北坡草本植物盖度由75%下降为39%,灌木盖度由25%增加到54%,在山脊附近50 m左右的局地范围内植被类型表现为明显的南北坡向分异格局.2005年冬季南坡平均雪厚度21cm,山脊处为26 cm,北坡34 cm,由南坡向北坡雪被厚度逐渐增加;雪被厚度与灌木盖度呈正相关(r= 0.40,p《0.01,n=248),与草本植物盖度呈负相关(r=-0.45,p《0.01,n=248).ANOVA的分析结果显示,土层厚度、风干土含水量、土壤酸度、有机质含量和全磷含量的南北坡向分异明显,由南坡向北坡逐渐增加,与雪被平均厚度存在显著的相关关系,相关系数分别为0.267、0.286、0.199和-0.183 (n=119,p 《 0.05);土壤全钾和铵态氮含量的坡向差异不明显,与雪被厚度的相关性也不显著,相关系数分别为-0.068和0.104(n=119,p》0.05).显示土壤特征的坡向分异规律在某种程度上与雪被的梯度变化存在着共轭关系.群落CCA排序及排序轴与环境指标的相关性分析也表明,坡度、雪被厚度、有机质含量和土壤湿度是导致植物群落坡向分异的主要环境因子,土壤铵态氮和全钾含量对植被坡向分异的影响不明显.  相似文献   

18.
采用凋落物分解袋法,研究了土壤动物对川西高山/亚高山森林代表性植物康定柳、方枝柏、红桦和岷江冷杉凋落物在分解第一年(2011年11月-2012年10月)不同关键时期质量损失的贡献.结果表明: 在凋落物第一年的分解过程中, 不同物种凋落物的分解速率大小依次为康定柳>红桦>岷江冷杉>方枝柏,且均为生长季节大于冻融季节.土壤动物对凋落物分解的贡献率(Pfau)为方枝柏(26.7%)>岷江冷杉(18.8%)>红桦(15.7%)>康定柳(13.2%),其中康定柳和方枝柏的Pfau在生长季节大于冻融季节,而红桦和岷江冷杉的Pfau为冻融季节大于生长季节.冻融季节土壤动物的作用与凋落物初始C、P和N/P显著相关,而生长季节则与N、C/N、木质素、木质素/纤维素显著相关.  相似文献   

19.
高山森林凋落物分解过程中的微生物生物量动态   总被引:1,自引:0,他引:1  
周晓庆  吴福忠  杨万勤  朱剑霄 《生态学报》2011,31(14):4144-4152
凋落物分解过程中的微生物生物量动态对于深入了解森林凋落物分解机理具有重要意义。为了解高山森林典型树种凋落物分解过程中的微生物生物量特征,采用凋落物分解袋法,研究了土壤冻结期(3月)、融冻期(4月-5月)、生长季节(5-10月)和冻结初期(11月)红桦(Betula albosinensi)、岷江冷杉(Abies faxoniana)和粗枝云杉(Picea asperata)凋落物分解过程的微生物生物量C(MBC)、微生物生物量N(MBN)和微生物生物量P(MBP)动态。四个关键时期,凋落物的MBC、MBN以生长季节最高,但非生长季节的三个关键时期也检测出较高的MBC、MBN。在融冻期结束后,三类凋落物分解过程中MBC和MBN均出现爆发性增长。然而,MBP在生长季节中期(8月)、完全冻结期(3月)和冻结初期(11月)均相对较低,但在融冻期和生长季节后期(9月)相对较高。另外,红桦凋落物的MBC、MBN和MBP含量均高于岷江冷杉和粗枝云杉凋落物(除4月粗枝云杉凋落物MBP异常升高外)。这些结果为更加清晰地认识高寒森林凋落物分解过程及机理,以及进一步理解陆地生态系统结构和功能提供了一定基础数据。  相似文献   

20.
对川西高山树线红杉新鲜凋落物中有机组分于11月进行自然条件(对照)、加氮(2 g N·m-2)、增温(顶开式培养室)、加氮+增温4个处理的原位培养,并监测凋落物中有机组分的分解动态.结果表明: 在试验开始后4个月内,增温、加氮以及加氮+增温处理比对照显著促进了红杉凋落物中水溶性糖、水溶性酚和多酚的分解,但随着培养时间的延长,累积分解量的差异逐渐缩小.与对照相比,增温、加氮和增温+加氮处理均抑制红杉凋落物中CH2Cl2提取组分、酸溶碳水化合物、酸溶木质素和非酸溶木质素分解,其中增温处理抑制作用最强,加氮处理抑制效果最弱,增温+加氮处理介于二者之间;增温处理对非酸溶木质素和CH2Cl2提取组分的半分解周期延长1倍以上,热水溶组分的半分解周期延长50%以上.在原位培养条件下,红杉新鲜凋落物中水溶性糖、水溶性酚、多酚、酸溶碳水化合物、酸溶木质素是较容易分解的有机组分,半分解周期分别为182、159、127、154和190 d;热水溶组分、CH2Cl2提取组分和非酸溶木质素是较难分解的有机组分,半分解周期分别是209、302和318 d;尽管低温季节(11月至次年3月)极其寒冷,气温均低于0 ℃,常被认为是微生物活性最弱、有机物分解最慢的时期,但结果显示低温季节期间红杉凋落物各有机组分却分解最快.因此,氮沉降和升温将迟滞该区域高寒红杉林凋落物的分解.这将有利于高寒森林生态系统的土壤碳固持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号