首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel et al. in Combinatorica 1(2):169–197, 1981). Perfect graphs have the key property that clique and chromatic number coincide for all induced subgraphs; we address the question whether the algorithmic results for perfect graphs can be extended to graph classes where the chromatic number of all members is bounded by the clique number plus one. We consider a well-studied superclass of perfect graphs satisfying this property, the circular-perfect graphs, and show that for such graphs both clique and chromatic number are computable in polynomial time as well. In addition, we discuss the polynomial time computability of further graph parameters for certain subclasses of circular-perfect graphs. All the results strongly rely upon Lovász’s Theta function.  相似文献   

2.
Zhu [X. Zhu, Circular-perfect graphs, J. Graph Theory 48 (2005) 186-209] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G)≤ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. (in press)]; in particular, perfect graphs are closed under complementation [L. Lovász, Normal hypergraphs and the weak perfect graph conjecture, Discrete Math. 2 (1972) 253-267]. To the contrary, circular-perfect graphs are not closed under complementation and the list of forbidden subgraphs is unknown.We study strongly circular-perfect graphs: a circular-perfect graph is strongly circular-perfect if its complement is circular-perfect as well. This subclass entails perfect graphs, odd holes, and odd antiholes. As the main result, we fully characterize the triangle-free strongly circular-perfect graphs, and prove that, for this graph class, both the stable set problem and the recognition problem can be solved in polynomial time.Moreover, we address the characterization of strongly circular-perfect graphs by means of forbidden subgraphs. Results from [A. Pêcher, A. Wagler, On classes of minimal circular-imperfect graphs, Discrete Math. (in press)] suggest that formulating a corresponding conjecture for circular-perfect graphs is difficult; it is even unknown which triangle-free graphs are minimal circular-imperfect. We present the complete list of all triangle-free minimal not strongly circular-perfect graphs.  相似文献   

3.
A polynomially computable upper bound for the weighted independence number of a graph is studied. This gives rise to a convex body containing the vertex packing polytope of the graph. This body is a polytope if and only if the graph is perfect. As an application of these notions, we show that the maximum weight independent set of an h-perfect graph can be found in polynomial time.  相似文献   

4.
A graph is called “perfectly orderable” if its vertices can be ordered in such a way that, for each induced subgraph F, a certain “greedy” coloring heuristic delivers an optimal coloring of F. No polynomial-time algorithm to recognize these graphs is known. We present four classes of perfectly orderable graphs: Welsh–Powell perfect graphs, Matula perfect graphs, graphs of Dilworth number at most three, and unions of two threshold graphs. Graphs in each of the first three classes are recognizable in a polynomial time. In every graph that belongs to one of the first two classes, we can find a largest clique and an optimal coloring in a linear time.  相似文献   

5.
6.
Circular-perfect graphs form a natural superclass of perfect graphs: on the one hand due to their definition by means of a more general coloring concept, on the other hand as an important class of χ-bound graphs with the smallest non-trivial χ-binding function χ(G)?ω(G)+1.The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229], provides a characterization of perfect graphs by means of forbidden subgraphs. It is, therefore, natural to ask for an analogous conjecture for circular-perfect graphs, that is for a characterization of all minimal circular-imperfect graphs.At present, not many minimal circular-imperfect graphs are known. This paper studies the circular-(im)perfection of some families of graphs: normalized circular cliques, partitionable graphs, planar graphs, and complete joins. We thereby exhibit classes of minimal circular-imperfect graphs, namely, certain partitionable webs, a subclass of planar graphs, and odd wheels and odd antiwheels. As those classes appear to be very different from a structural point of view, we infer that formulating an appropriate conjecture for circular-perfect graphs, as analogue to the Strong Perfect Graph Theorem, seems to be difficult.  相似文献   

7.
We give a closed formula for Lovász’s theta number of the powers of cycle graphs C k d?1 and of their complements, the circular complete graphs K k/d . As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for the theta number of C k d .  相似文献   

8.
9.
The class of edge intersection graphs of a collection of paths in a tree (EPT graphs) is investigated, where two paths edge intersect if they share an edge. The cliques of an EPT graph are characterized and shown to have strong Helly number 4. From this it is demonstrated that the problem of finding a maximum clique of an EPT graph can be solved in polynomial time. It is shown that the strong perfect graph conjecture holds for EPT graphs. Further complexity results follow from the observation that every line graph is an EPT graph. The class of EPT graphs is equivalent to the class of fundamental cycle graphs.  相似文献   

10.
关于一般的图的完美匹配计数的问题已证实是NP-hard问题.但Pfaffian图的完美匹配计数问题(以及其它相关问题)却能够在多项式时间内解决.由此可见图的Pfaffian性的重要性.在这篇文章中,我们研究了若干种影响图的Pfaffian性的运算.  相似文献   

11.
Circular-perfect graphs form a natural superclass of the well-known perfect graphs by means of a more general coloring concept.For perfect graphs, a characterization by means of forbidden subgraphs was recently settled by Chudnovsky et al. [Chudnovsky, M., N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem, Annals of Mathematics 164 (2006) 51–229]. It is, therefore, natural to ask for an analogous characterization for circular-perfect graphs or, equivalently, for a characterization of all minimally circular-imperfect graphs.Our focus is the circular-(im)perfection of triangle-free graphs. We exhibit several different new infinite families of minimally circular-imperfect triangle-free graphs. This shows that a characterization of circular-perfect graphs by means of forbidden subgraphs is a difficult task, even if restricted to the class of triangle-free graphs. This is in contrary to the perfect case where it is long-time known that the only minimally imperfect triangle-free graphs are the odd holes [Tucker, A., Critical Perfect Graphs and Perfect 3-chromatic Graphs, J. Combin. Theory (B) 23 (1977) 143–149].  相似文献   

12.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

13.
Suppose that G is a finite simple graph and w is a weight function which assigns to each vertex of G a nonnegative real number. Let C be a circle of length t. A t-circular coloring of (G, w) is a mapping Δ of the vertices of G to arcs of C such that Δ(x)∩Δ(y) = 0 if (x, y) ∈ E(G) and Δ(x) has length w(x). The circular-chromatic number of (G, w) is the least t for which there is a t-circular coloring of (G, w). This paper discusses basic properties of circular chromatic number of a weighted graph and relations between this parameter and other graph parameters. We are particularly interested in graphs G for which the circular-chromatic number of (G, w) is equal to the fractional clique weight of (G, w) for arbitrary weight function w. We call such graphs star-superperfect. We prove that odd cycles and their complements are star-superperfect. We then prove a theorem about the circular chromatic number of lexicographic product of graphs which provides a tool of constructing new star-superperfect graphs from old ones. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A bull is the graph obtained from a triangle by adding two pendant vertices adjacent to distinct vertices of the triangle. Chvátal and Sbihi showed that the strong perfect graph conjecture holds for Bull-free graphs. We give a polynomial time recognition algorithm for Bull-free perfect graphs.  相似文献   

15.
The pre-coloring extension problem consists, given a graph G and a set of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that “PrExt perfect” graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (“co-Artemis” graphs, which are “co-perfectly contractile” graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs. C.N.R.S. Final version received: January, 2007  相似文献   

16.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

17.
A matching M is called uniquely restricted in a graph G if it is the unique perfect matching of the subgraph induced by the vertices that M saturates. G is a unicycle graph if it owns only one cycle. Golumbic, Hirst and Lewenstein observed that for a tree or a graph with only odd cycles the size of a maximum uniquely restricted matching is equal to the matching number of the graph. In this paper we characterize unicycle graphs enjoying this equality. Moreover, we describe unicycle graphs with only uniquely restricted maximum matchings. Using these findings, we show that unicycle graphs having only uniquely restricted maximum matchings can be recognized in polynomial time.  相似文献   

18.
We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-Pfaffian graphs minimal with respect to the matching minor relation. This is in sharp contrast with the bipartite case, as Little [C.H.C. Little, A characterization of convertible (0,1)-matrices, J. Combin. Theory Ser. B 18 (1975) 187–208] proved that every bipartite non-Pfaffian graph contains a matching minor isomorphic to K3,3. We relax the notion of a matching minor and conjecture that there are only finitely many (perhaps as few as two) non-Pfaffian graphs minimal with respect to this notion.We define Pfaffian factor-critical graphs and study them in the second part of the paper. They seem to be of interest as the number of near perfect matchings in a Pfaffian factor-critical graph can be computed in polynomial time. We give a polynomial time recognition algorithm for this class of graphs and characterize non-Pfaffian factor-critical graphs in terms of forbidden central subgraphs.  相似文献   

19.
A bull is a graph obtained by adding a pendant vertex at two vertices of a triangle. Chvátal and Sbihi showed that the Strong Perfect Graph Conjecture holds for bull-free graphs. We show that bull-free perfect graphs are quasi-parity graphs, and that bull-free perfect graphs with no antihole are perfectly contractile. Our proof yields a polynomial algorithm for coloring bull-free strict quasi-parity graphsPartially supported by CNPq, grant 30 1160/91.0  相似文献   

20.
Cliquewidth and NLC-width are two closely related parameters that measure the complexity of graphs. Both clique- and NLC-width are defined to be the minimum number of labels required to create a labelled graph by certain terms of operations. Many hard problems on graphs become solvable in polynomial-time if the inputs are restricted to graphs of bounded clique- or NLC-width. Cliquewidth and NLC-width differ at most by a factor of two.The relative counterparts of these parameters are defined to be the minimum number of labels necessary to create a graph while the tree-structure of the term is fixed. We show that Relative Cliquewidth and Relative NLC-width differ significantly in computational complexity. While the former problem is NP-complete the latter is solvable in polynomial time. The relative NLC-width can be computed in O(n3) time, which also yields an exact algorithm for computing the NLC-width in time O(3nn). Additionally, our technique enables a combinatorial characterisation of NLC-width that avoids the usual operations on labelled graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号