首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The synthesis and characterization of the complexes [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]MX (M = Cu, X = OTf (2), SC(6)H(5) (4), SC(6)H(4)NMe(2)-2 (5), SC(6)H(4)CH(2)NMe(2)-2 (6), S-1-C(10)H(6)NMe(2)-8 (7), Cl (8), (N&tbd1;CMe)PF(6) (9); M = Ag, X = OTf (3)) are described. These complexes contain monomeric MX entities, which are eta(2)-bonded by both alkyne functionalities of the organometallic bis(alkyne) ligand [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)] (1). The reactions of 2 with the Lewis bases N&tbd1;CPh and N&tbd1;CC(H)=C(H)C&tbd1;N afford the cationic complexes {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu(N&tbd1;CPh)}OTf (10) and {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu}(2)(N&tbd1;CC(H)=C(H)C&tbd1;N)(OTf)(2) (11), respectively. The X-ray structures of 2, 3, and 6 have been determined. Crystals of 2 are monoclinic, space group P2(1)/c, with a = 12.8547(7) ?, b = 21.340(2) ?, c = 18.279(1) ?, beta = 133.623(5) degrees, V= 3629.7(5) ?(3), Z = 4, and final R = 0.047 for 5531 reflections with I >/= 2.5sigma(I) and 400 variables. The silver triflate complex 3 is isostructural, but not isomorphous, with the corresponding copper complex 2, and crystals of 3 are monoclinic, space group P2(1)/c, with a = 13.384(3) ?, b = 24.55(1) ?, c = 13.506(3) ?, beta = 119.21(2) degrees, V = 3873(2) ?(3), Z = 4, and final R = 0.038 for 3578 reflections with F >/= 4sigma(F) and 403 variables. Crystals of the copper arenethiolate complex 6 are triclinic, space group P&onemacr;, with a = 11.277(3) ?, b = 12.991(6) ?, c = 15.390(6) ?, alpha = 65.17(4) degrees, beta = 78.91(3) degrees, gamma = 84.78(3) degrees, V = 2008(2) ?(3), Z = 2, and final R = 0.079 for 6022 reflections and 388 variables. Complexes 2-11 all contain a monomeric bis(eta(2)-alkyne)M(eta(1)-X) unit (M = Cu, Ag) in which the group 11 metal atom is trigonally coordinated by the chelating bis(eta(2)-alkyne) entity Ti(C&tbd1;CSiMe(3))(2) and an eta(1)-bonded monoanionic ligand X. The copper arenethiolate complexes 4-7 are fluxional in solution.  相似文献   

2.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

3.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

4.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

5.
In order to obtain crystals of fullerene oxides that are suitable for single-crystal X-ray diffraction, the reactions between C(60)O and Vaska type iridium complexes have been examined. While reaction with Ir(CO)Cl(P(C(6)H(5))(3))(2)(and with triphenylphosphine but not triphenylarsine) results in partial deoxygenation of the fullerene epoxide, reaction with Ir(CO)Cl(As(C(6)H(5))(3))(2)()()produces crystalline (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3). Black triangular prisms of (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3)form in the monoclinic space group P2(1)/n with a = 14.662(2) ?, b = 19.836(2) ?, c = 28.462(5) ?, and beta = 100.318(12) degrees at 123 (2) K with Z = 4. Refinement (on F(2)) of 10 472 reflections and 1095 parameters with 10 restraints yielded wR2 = 0.152 and a conventional R = 0.066 (for 7218 reflections with I > 2.0sigma(I)). The structure shows that the iridium complex is bound to a 6:6 ring junction of the fullerene with four partially occupied sites for the epoxide oxygen atom. Thus, while deoxygenation of the fullerene does not occur upon reaction with Ir(CO)Cl(AsPh(3))(2), there is a greater degree of disorder in (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2)than previously reported for (eta(2)-C(60)O)Ir(CO)Cl(PPh(3))(2).  相似文献   

6.
The reactions of elemental indium and In(I)Br with the carbonyl-free organonickel complexes (eta(5)-C(5)H(5))(PR(3))Ni-Br (R = CH(3), C(6)H(5)) have been studied in some detail. Either redox reactions to yield the ionic products [(eta(5)-C(5)H(5))(PR(3))(2)Ni][InBr(4)] (2a,b) occurred or the Ni-In bound systems (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)) (3a) and [(eta(5)-C(5)H(5))(PPh(3))Ni](2)InBr (4) were obtained in good yields. The new compounds were characterized by elemental analysis, NMR, and mass spectrometry. A short Ni-In bond of 244.65(9) pm was found for 3a. Single crystal data for (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)).THF (3a): triclinic, P1 with a = 1124.9(3), b = 1353.2(4), c = 1476.4(4) pm, alpha = 94.74(2) degrees, beta = 101.78(2) degrees, gamma = 109.64(1) degrees, V = 2044(1) x 10(6) pm(3), Z = 2, R = 0.053 (R(w) = 0.063).  相似文献   

7.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

8.
The M?ssbauer effect spectra for a series of small [Fe(eta(5)-C(5)H(5))(CO)(x)()] substituted metallaborane complexes are reported, where x = 1 or 2. The pentaborane cage in compounds [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(7)P(C(6)H(5))(2)] (1), [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(8)] (2), and [(Fe(eta(5)-C(5)H(5))(CO)(2))(2)B(5)H(7)] (3) was found to act as a significantly better donor ligand than the ligands in a comparison group of previously reported [Fe(eta(5)-C(5)H(5))(CO)LX] complexes, where L = CO or PPh(3) and X = halide, pseudohalide, or alkyl ligands. These metallaborane complexes were found to most resemble their silyl analogues in M?ssbauer spectral parameters and the electronic distribution around the iron centers. In addition, the M?ssbauer data showed that the [&mgr;-2,3-(P(C(6)H(5))(2)B(5)H(7)](-) ligand was a superior donor to the corresponding unsubstituted [B(5)H(8)](-) ligand. The M?ssbauer spectral results for the metallaborane complexes studied were found to be in general agreement with the anticipated donor and accepting bonding considerations for the cage ligands based upon their infrared and (11)B NMR spectra and X-ray structural features. The M?ssbauer data for the [Fe(eta(5)-C(5)H(5))(CO)B(4)H(6)(P(C(6)H(5))(2))] (4) and [Fe(eta(5)-C(5)H(5))(CO)B(3)H(7)(P(C(6)H(5))(2))] (5) complexes, in comparison with compound 1, showed that as the borane cage becomes progressively smaller, it becomes a poorer donor ligand. A qualitative relationship was found between the observed M?ssbauer isomer shift data and the number of boron cage vertices for the structurally related [Fe(eta(5)-C(5)H(5))(CO)(x)B(y)H(z)P(C(6)H(5))(2)] complexes, where x = 1 or 2, y = 3-5, and z = 6 or 7. The X-ray crystallographic data for compounds 1, 2, 5, and [Fe(eta(5)-C(5)H(5))(CO)B(5)H(8)] (6) were also found to agree with the trends observed in the M?ssbauer spectra which showed that the s-electron density on the iron nucleus increases in the order 5 < 6 < 2 < 1. The X-ray crystal structure of complex 2 is also reported. Crystallographic data for 2: space group P2(1)/c (No. 14, monoclinic), a = 6.084(3) ?, b = 15.045(8) ?, c = 13.449(7) ?, beta = 99.69(5) degrees, V = 1213(1) ?(3), Z = 4 molecules/cell.  相似文献   

9.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

10.
The complexes of osmium with tacn (1,4,7-triazacyclononane) and Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), [LOs (eta(6)-C(6)H(6))](PF(6))(2) (L = tacn) and LOsCl(3) (L = tacn, Me(3)tacn), have been prepared by substitution of L on [Os(eta(6)-C(6)H(6))Cl(2)](2) or [Os(2)Cl(8)](2)(-), respectively. Reaction of LOsCl(3) with neat triflic acid leads to partial replacement of chloride and formation of the binuclear Os(III)-Os(III) complexes [LOs(&mgr;-Cl(3))OsL](PF(6))(3) (L = tacn, Me(3)tacn). The binuclear nature was established by NMR spectroscopy and elemental analysis and, for L = tacn, a partially refined X-ray crystal structure which shows the Os-Os separation to be 2.667 ?, indicative of significant metal-metal bonding. Reduction of [LOs(&mgr;-Cl(3))OsL](3+) over zinc amalgam in either aqueous or non-aqueous solution yields the intensely colored Os(II)-Os(III) mixed-valence ions [LOs(&mgr;-Cl(3))OsL](2+). Electrochemical measurements on [LOs(&mgr;-Cl(3))OsL](3+) in CH(3)CN reveal the reversible formation of the mixed valence ions. These are further reduced at lower potential to the Os(II)-Os(II) binuclear species, reversibly for L = Me(3)tacn. (Me(3)tacn)OsCl(3) is oxidized by persulfate ion to give [(Me(3)tacn)OsCl(3)](+); zinc amalgam reduction in an aqueous solution at high concentration produces the binuclear complex [(Me(3)tacn)Os(&mgr;-Cl(3))Os(Me(3)tacn)](3+) or, at low concentration, a solution containing an air sensitive osmium(II) species. Addition of BPh(4)(-) results in the eta(6)-arene zwitterion [(Me(3)tacn)Os(eta(6)-C(6)H(5)BPh(3))](+), which was characterized by X-ray diffraction on the BPh(4)(-) salt. The compound crystallizes in the triclinic space group P1 with a = 11.829(2) ?, b = 12.480(3) ?, c = 17.155(4) ?, alpha = 84.42(2) degrees, beta = 83.52(2) degrees, gamma = 71.45(2) degrees, V = 2380(2) ?(3), Z = 2, and R = 7.62%, and R(w) = 7.39%.  相似文献   

11.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

12.
Reactions of [(eta(6)-arene)RuCl(2)](2) 1 (arene = p-cymene (a), 1,2,3,4-Me(4)C(6)H(2) (b), 1,2,3-Me(3)C(6)H(2) (c)) with tris(2,6-dimethoxyphenyl)phosphine (TDMPP) led to loss of two molecules of CH(3)Cl to give (eta(6)-arene)Ru[{2-O-C(6)H(3)-6-OMe}(2){C(6)H(3)(OMe)(2)-2,6}], 2a-c, which contains a trihapto ligand (eta(3)-P,O,O) derived from TDMPP, whereas the 1,3,5-Me(3)C(6)H(3) (1d), 1,2,3,5-Me(4)C(6)H(2) (1e), and C(6)Me(6) (1f) complexes did not react with TDMPP. The structures of 2a and 2b were confirmed by X-ray analyses: for 2a, a = 11.691(2) ?, b = 15.228(2) ?, c = 10.320(1) ?, alpha = 95.93(1) degrees, beta = 113.783(9) degrees, gamma = 83.86(1) degrees, triclinic, P&onemacr;, Z = 2, R = 0.051; for 2b, a = 17.79(2) ?, b = 15.43(1) ?, c = 20.93(1) ?, beta = 91.25(8) degrees, monoclinic, P2(1)/n, Z = 8, R = 0.056. Bis(2,6-dimethoxyphenyl)phenylphosphine (BDMPP) reacted with 1a, 1b, and 1d at room temperature to give (eta(6)-arene)RuCl[PPh(2-O-C(6)H(3)-6-OMe){C(6)H(3)(OMe)(2)-2,6}], 3a,b,d, which contains a dihapto (eta(2)-P,O) ligand derived from BDMPP by an X-ray analysis of 3a: a = 12.33(1) ?, b = 14.246(8) ?, c = 11.236(9) ?, alpha = 91.47(8) degrees, beta = 117.28(6) degrees, gamma = 111.70(6) degrees, triclinic, P&onemacr;, Z = 2, R = 0.040. A similar reaction with 1f recovered the starting materials, but that in refluxing MeCN produced [(eta(6)-C(6)Me(6))Ru[PPh(2-O-C(6)H(3)-6-OMe}(2)], 4f, containing a trihapto (eta(3)-P,O,O) ligand derived from BDMPP. Complex 1d reacted with BDMPP at reflux in MeCN/CH(2)Cl(2) and resulted in a loss of an arene ring to give a five-coordinate complex, Ru[eta(2)-P,O-PPh(2-O-C(6)H(3)-6-OMe){C(6)H(3)(OMe)(2)-2,6}](2)(MeCN), 5. Treatment of (2,6-dimethoxyphenyl)diphenylphosphine (MDMPP) with 1f gave (eta(6)-C(6)Me(6))RuCl[eta(2)-P,O-PPh(2)(2-O-C(6)H(3)-6-OMe)],6f, and that with 1b gave (eta(6)-1,2,3,4-Me(4)C(6)H(2))RuCl[eta(2)-P,O-PPh(2)(2-O-C(6)H(3)-6-OMe}], 6b, and (eta(6)-1,2,3,4-Me(4)C(6)H(2))RuCl(2)[eta(1)-P-PPh(2){C(6)H(3)(OMe)(2)-2,6}],7b. The phosphine ligand of 6b acted as a bidentate ligand derived from MDMPP: a = 8.074(4) ?, b = 16.816(3) ?, c = 18.916(4) ?, beta = 94.05(3) degrees, monoclinic, P2(1)/n, Z = 4, R = 0.051. Transformation of 7b to 6b readily occurred accompanying an elimination of MeCl. Reaction of 1a with MDMPP eliminated an arene ring to give the octahedral compound RuCl(2)[eta(2)-P,OMe-PPh(2){C(6)H(3)(MeO)(2)-2,6}](2), 8. An X-ray analysis of 8 showed that two MDMPP ligands were in a cis-position: a = 10.596(14) ?, b = 27.586(12) ?, c = 13.036(8) ?, beta = 108.17(7) degrees, monoclinic, P2(1)/n, Z = 4, R = 0.035.  相似文献   

13.
The dihydrido-olefin complex OsH(2)(eta(2)-CH(2)=CHEt)(CO)(P(i)Pr(3))(2) (2) reacts with H(2)SiPh(2) to give OsH(3)(SiHPh(2))(CO)(P(i)Pr(3))(2) (3). The molecular structure of 3 has been determined by X-ray diffraction (monoclinic, space group P2(1)/c with a = 16.375(2) ?, b = 11.670(1) ?, c =18.806(2) ?, beta = 107.67(1) degrees, and Z = 4) together with ab initio calculations on the model compound OsH(3)(SiH(3))(CO)(PH(3))(2). The coordination geometry around the osmium center can be rationalized as a heavily distorted pentagonal bipyramid with one hydrido ligand and the carbonyl group in the axial positions. The two other hydrido ligands lie in the equatorial plane, one between the phosphine ligands and the other between the SiHPh(2) group and one of the phosphine ligands. Complex 3 can also be prepared by reaction of OsH(eta(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (4) with H(2)SiPh(2). Similarly, the treatment of 4 with HSiPh(3) affords OsH(3)(SiPh(3))(CO)(P(i)Pr(3))(2) (5), while the addition of H(3)SiPh to 4 in methanol yields OsH(3){Si(OMe)(2)Ph}(CO)(P(i)Pr(3))(2) (6). Complex 2 also reacts with HGeR(3) and HSnR(3) to give OsH(3)(GeR(3))(CO)(P(i)Pr(3))(2) (GeR(3) = GeHPh(2) (7), GePh(3) (8), GeEt(3) (9)) and OsH(3)(SnR(3))(CO)(P(i)Pr(3))(2) (R = Ph (10), (n)Bu (11)), respectively. In solution, compounds 3 and 5-11 are fluxional and display similar (1)H and (31)P{(1)H} NMR spectra, suggesting that they possess a similar arrangement of ligands around the osmium atom.  相似文献   

14.
As starting materials for heterobimetallic complexes, [RuCp(PPh(3))CO(PPh(2)H)]PF(6) and [RuCp(PPh(3))CO(eta(1)-dppm)]PF(6) were prepared from RuCp(PPh(3))(CO)Cl. In the course of preparing [RuCp(eta(2)-dppm)(eta(1)-dppm)]Cl from RuCp(Ph(3)P)(eta(1)-dppm)Cl, the new monomer RuCpCl(eta(1)-dppm)(2) was isolated. The uncommon coordination mode of the two monodentate bis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) ?, b = 14.869(2) ?, c = 15.447(2) ?, alpha = 84.63(1) degrees, beta = 70.55(1) degrees, gamma = 72.92(1) degrees, V = 2378.7(5) ?(3), d(calc) = 1.355 g cm(-)(3) (298 K), triclinic, P&onemacr;, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh(3))Cl(&mgr;-dppm)PtCl(2), RuCpCl(&mgr;-dppm)(2)PtCl(2), and [RuCp(PPh(3))CO(&mgr;-dppm)PtCl(2)]PF(6) each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO)(3)(&mgr;-dppm)(2)Pt(H)]PF(6) and [MoCp(CO)(2)(&mgr;-PPh(2))(&mgr;-H)Pt(PPh(3))(MeCN)]PF(6) were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.  相似文献   

15.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

16.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

17.
Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) ?, b = 13.902(3) ?, c = 19.643(2) ?, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) ?(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.  相似文献   

18.
The diastereoselective addition of Ph(2)PH to the chiral ortho-substituted eta(6)-benzaldimine complexes (eta(6)-o-X-C(6)H(4)CH=NAr)Cr(CO)(3) (1, X = MeO, Ar = p-C(6)H(4)OMe; 2, X = Cl, Ar = Ph) leads to the formation of the corresponding chiral aminophosphines (alpha-P,N) Ph(2)P-CH(Ar(1))-NHAr(2) (3, Ar(1) = o-C(6)H(4)(OCH(3))[Cr(CO)(3)], Ar(2) = p-C(6)H(4)OCH(3); 4, Ar(1) = o-C(6)H(4)Cl[Cr(CO)(3)], Ar(2) = Ph) in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC(6)H(4)CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine Ph(2)P-CH(Ar(1))-NHAr(2) (4', Ar(1) = o-C(6)H(4)Cl, Ar(2) = Ph). Depending on the equilibrium constant, the subsequent addition of (1)/(2) equiv of [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) leads to either Ph(2)PH oxidative addition in the case of 3 or to the corresponding [RhCl(COD)(alpha-P,N)] complexes [RhCl(COD)(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)] (5) and [RhCl(COD)(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)] (5') in the cases of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to (1)/(4) equiv of [Rh(CO)(2)Cl](2) leads to the [RhCl(CO)(alpha-P,N)(2)] complexes [RhCO(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)(2)Cl] (7) or [RhCO(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)(2)Cl] (7') as mixtures of (R(C),S(C))/(S(C),R(C)) and (R(C),R(C))/(S(C),S(C)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and (31)P NMR spectroscopies and X-ray crystallography. These compounds exhibit intramolecular Rh-Cl.H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under 1 atm of CO, 5 is converted to an unstable complex [RhCl(CO)(2)(alpha-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture that was either freshly prepared or left standing for 20 h under high CO pressure.  相似文献   

19.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

20.
M(eta(6)-arene)(2) species (M = Cr, arene = 1,3,5-Me(3)C(6)H(3); M = Mo, arene = 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)), have been prepared by a modified Fischer-Hafner synthesis or by metal vapour techniques. The reaction of Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2) with the fulvene derivatives pentacarbomethoxycyclopentadiene (pcmcpH), 1-benzoyl-6-hydroxy-6-phenylfulvene (dbcpH), or 1-benzoyl-3-nitro-6-hydroxy-6-phenylfulvene (dbncpH) proceeds with evolution of dihydrogen and formation of the ionic derivatives [Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2)][E], where E = pcmcp, dbcp, or dbncp. Mo(eta(6)-arene)(2) derivatives (arene = toluene, 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)) are oxidized to [Mo(eta(6)-arene)(2)](+) by pcmcpH. The crystal and molecular structures of [M(eta(6)-1,3,5-R(3)C(6)H(3))(2)][pcmcp] (M = Cr, R = Me; M = Mo, R = Me, (i)Pr) have been solved by X-ray single crystal diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号