首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
系统概述了二十面体闭笼型硼氢阴离子B_(12)H_(12)~(2-)及火炸药研究中的相关化合物的制备、热行为、热化学、能量性质;展望了此类多硼氢化合物在此领域中的应用前景。指出未来多硼氢化合物推进剂研究的主要方向为:以理论计算为基础,以多硼氢化合物完全燃烧为目标,设计、合成、筛选出在火炸药体系中高效率释放其固有能量的新的高能和超高能B_(12)H_(12)~(2-)离子衍生物。附参考文献158篇。  相似文献   

2.
研究了硼氢化合物 B1 2 H1 2 [N(C2 H5 ) 4] 2 对 NEPE推进剂燃烧性能的影响 ,采用 DSC分析了 B1 2 H1 2 [N(C2 H5 ) 4] 2 与 NEPE推进剂主要组分硝酸酯的相容性以及对推进剂固化反应的催化作用和对高氯酸铵、硝胺常压热分解的催化作用 ,并利用恒压静态燃速仪测试了推进剂在 4~ 1 1 MPa的燃烧速度和燃速压力指数  相似文献   

3.
综述了硼酸盐水溶液中硼氧配阴离子的存在形式、振动光谱研究结果及影响其变化的因素.硼酸盐水溶液中,硼氧配阴离子除了常见的[B(OH)4]-,B(OH)3,[B3O3(OH)4],[B4O5(OH)4]2-,[B5O6(OH)4]-,[B6O7(OH)6]2-以外,还存在着[B2O(OH)6]-2,[B3O3(OH)5]2-等,各种硼氧配阴离子相互作用、相互影响.FT-IR和Raman光谱研究结果进一步明确了硼氧配阴离子的存在形式及相互作用.同时指出了各种硼氧配阴离子的存在形式及相互作用与溶液总硼浓度、pH、金属阳离子、温度及水热条件等有关,且主要依赖于溶液总硼浓度和pH.高的总硼浓度和较低的pH有利于高聚合度的硼氧配阴离子的存在,反之则利于低聚合度的硼氧配阴离子的存在.  相似文献   

4.
AlB12粉末的制备及性能表征   总被引:1,自引:0,他引:1  
在热力学分析的基础上,以B粉和Al粉为原料,直接制备AlB12粉末.通过X射线衍射和扫描电子显微镜分析研究了工艺对合成产物相组成和显微结构的影响,确定了合成过程的最佳工艺参数.结果表明密封法最有利于控制氧化物杂质生成.用密封法合成AlB12粉末的最佳工艺参数为:合成温度1400℃,恒温时间60 min,试样中Al的质量分数17.2%,埋粉中Al的质量分数20%.产物主晶相为α-AlB12,杂质相为MsAl2O4.AlB12粉体平均粒径4.32μm,比表面积611.76m2/kg.  相似文献   

5.
采用浸渍-还原法制备了Ru/SiO2催化剂,并考察了钌负载量、还原剂硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/SiO2催化BH3NH3水解产氢的影响。结果表明,在钌的负载量为0.1%(质量分数)、还原剂硼氢化钠与钌的物质的量比为2.2∶1、还原温度为303 K时制备的催化剂,催化BH3NH3水解产氢速率最快[转化频率TOF为140.8 L H2/(mol Ru·min)]。搅拌转速为450 r/min时,氨硼烷向催化剂表面传质最快,产氢速率最大。氨硼烷水解反应由催化剂界面反应控制,产氢速率与催化剂用量成正比。随着反应温度的升高,Ru活化的氨硼烷分子能量增加,反应速率逐渐增加。反应动力学计算表明Ru/SiO2催化剂催化BH3NH3水解产氢反应对氨硼烷浓度为零级反应,活化能为45 kJ/mol。  相似文献   

6.
标题化合物是一类非常有用的硼试剂。综述了B2pin2在不同过渡金属催化下与不同有机底物生成不同的有机硼中间体,并且通过硼中间体转化为各类有机化合物。同时列举了一些重要的硼中间体化合物(如烯硼、烯丙基硼、1,3-丁二烯硼化合物)的合成。  相似文献   

7.
在热力学分析的基础上,以B粉和A1粉为原料,直接制备A1B12粉末。通过X射线衍射和扫描电子显微镜分析研究了工艺对合成产物相组成和显微结构的影响,确定了合成过程的最佳工艺参数。结果表明密封法最有利于控制氧化物杂质生成。用密封法合成A1B12粉末的最佳工艺参数为:合成温度1400℃,恒温时间60min,试样中A1的质量分数17.2%,埋粉中A1的质量分数20%。产物主晶相为α—A1B12杂质相为MgAl2O4。A1B12粉体平均粒径4.32μm,比表面积611.76m^2/kg。  相似文献   

8.
随着化石能源的消耗,新型清洁能源的开发迫在眉睫.氢能源因其燃烧性能好,且产物为水、无污染而备受关注.目前,氨硼烷(AB,NH3BH3)作为一种固体储氢材料已经引起了广泛的研究兴趣.氨硼烷分子量较轻,理论储氢密度高达19.6 wt%,其水解产氢反应条件温和、速率可控,且气体产物仅为氢气,因此氨硼烷作为一种质轻、无毒、环保...  相似文献   

9.
以钠硼解石天然矿粉为原料,经水热解聚和相转化制备出硼酸钙产品。通过化学分析、XRD及TG—DTG分析表明:产品中的物相主要是白硼钙石(4CaO·5B2O3-7H2O)、硬硼钙石(2CaO·3B2O3·5H2O)和羟硼钙石(3CaO·2B2O3·9H2O)。实验确定了适宜的工艺条件,即:反应体系液固体积质量比为2.5mL/g左右;解聚温度120℃;解聚时间8h左右;干燥温度在200℃左右。在此工艺条件下制得的硼酸钙产品的氧化钠质量分数在0.5%以下,很好地满足了无碱玻璃纤维工业对含硼原料的要求。  相似文献   

10.
采用一锅法Biginelli反应以H4SiW12O40/SiO2为催化剂,以苯甲醛、乙酰乙酸乙酯和尿素为原料,无水乙醇为溶剂合成了4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮。探讨了原料摩尔比、反应温度、催化剂用量及反应时间对收率的影响。结果表明,固定苯甲醛用量为0.04 mol的条件下,n(苯甲醛)∶n(乙酰乙酸乙酯)∶n(尿素)=1∶1.5∶1.5,催化剂的用量占反应物料总质量的2.0%,反应温度为90℃,反应时间为60 min,产品平均收率可达71.7%。通过熔点的测定,IR,1HNMR和MS对合成的3,4-二氢嘧啶酮化合物进行了表征。  相似文献   

11.
绿色火炸药及相关技术的发展与应用   总被引:12,自引:1,他引:11  
王昕 《火炸药学报》2006,29(5):67-71
综述了绿色火炸药及其生产工艺、销毁以及回收利用方面具有“绿色”特征的改进和应用研究成果。绿色火炸药包括洁净固体推进剂、无铅双基推进剂、TPE发射药、无毒发射药、无铅点火药和起爆药。绿色制造技术包括N2O5作硝化剂的含能硝基化合物化学合成,过硝酸盐作硝化剂、微生物作催化剂的生物合成技术,连续化柔性制造技术,基于双螺杆混合成型火炸药生产技术,火炸药生产中挥发性污染物的安全消除技术和纳米复合含能材料的Sol-Gel制备技术。绿色销毁和回收利用技术包括销毁产品的熔盐氧化技术、摧毁含含能化合物废水的光催化技术以及火炸药的回收再利用(R^3)技术。评述了上述火炸药及相关技术的最新状况和发展方向,附参考文献25篇。  相似文献   

12.
A nearly zero oxygen balance of organic compounds is characteristic for explosives and high performance solid rocket propellants. Because of its high oxygen content, the introduction of a trinitromethyl group into suitable organic compounds presents an attractive and simple way to produce new explosives. The reaction of 2-nitro-3-acetoxy-1-propene with nitroform is described which yields 1,1,1,3,5,5,5-heptanitropentane. The properties of this compound are described to assess the usefulness of this explosive in a comparison with known explosives of similar structure using theoretical calculations for the lead block, ballistic mortar and detonation properties. Although a possibility exists to introduce another nitro group in position 3 which would produce a compound with even higher oxygen balance, all attempts so far have not achieved this desirable goal.  相似文献   

13.
氨基四唑含能化合物研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
李芳  杜志明 《化工进展》2011,30(11):2481
氨基四唑是有机物中含氮量最高的一类化合物,具有高的正生成焓和良好的热力学稳定性,在高能钝感炸药、气体发生剂、无烟烟火剂、固体推进剂等领域有着广泛的应用前景。氨基四唑主要包括分子化合物、离子化合物和配合物3种。本文综述了5-氨基四唑和1,5-二氨基四唑类含能化合物的合成及性能。在此基础上,分析了氨基四唑类含能化合物的未来发展趋势。  相似文献   

14.
Perfusion explosives were prepared using foamed SF‐3 propellants, which were synthesized by a two‐stage batch foaming process with different saturation time in supercritical fluid CO2 as a foaming agent. The foamed SF‐3 propellants were characterized by scanning electron microscopy (SEM). Underwater detonation tests and test‐board detonation tests were carried out to investigate detonation performance of the prepared perfusion explosives. Results showed that more saturation time during the foaming process leads to more pores and cracks. Perfusion explosives prepared using foamed SF‐3 propellants exhibited much higher shock wave energy and stronger damage effectiveness than those using unfoamed SF‐3 propellants. Perfusion explosives prepared using foamed SF‐3 propellants with a saturation time of 2 h exhibited the highest shock wave energy and damage effectiveness, which decreased as the saturation time increased.  相似文献   

15.
Perfusion explosives were prepared using porous SF‐3 propellants, which were synthesized by a supercritical fluid foaming process. Scanning electron microscopy (SEM) was used to characterize the porous SF‐3 propellants. Massive holes were generated after the foaming process. The density of perfusion explosives using foamed SF‐3 propellants exceeds 1.3 g cm−3, and the detonation velocities exceed 6000 m s−1. Underwater energy tests and high‐speed photography were carried out to investigate the detonation performance of perfusion explosives. The results showed that perfusion explosives using unfoamed SF‐3 propellants could not be detonated. However, perfusion explosives using their foamed analogs could be detonated herein.  相似文献   

16.
Emerging trends in advanced high energy materials   总被引:4,自引:0,他引:4  
Enhanced performance of propellants and explosives is the most sought-after attribute for ambitious research programs in the field of high energy materials. Convergence of defence and space sector priorities has always kept research and development efforts in the area of propellants to the forefront. With the diminishing boundaries between rocket and gun propellants, as well as explosives, the possibility of low-vulnerable munitions with high performance potentials and spin-off advantages of research on rocket propellants are also emerging on the forefront. At the same time, an increasing predominance of missiles in today’s military warfare, as well as the space sector, has brought the issue of pollution by chlorine-containing combustion products of modern ammonium-perchlorate-based propellants into focus. A drastic transformation of high energy material technology is in offing. Research and development efforts made in this direction have brought an array of new materials into prominence. This paper reviews the recent work done in the frontier areas of advanced novel high energy materials. This paper covers the global scenario in the development of oxidizers, binders, plasticizers, high energy density materials, and insensitive high energy materials. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 1, pp. 72–85, January–February, 2007.  相似文献   

17.
呋咱类化合物因能量密度高、综合性能好、可作为炸药和推进剂等广泛应用于军事领域.3,4-二氨基呋咱(DAF)作为重要的前体化合物,其大规模合成为呋咱类高能量密度衍生物的应用奠定了基础.本文首先介绍了DAF的合成工艺及其氧化机理,并综述了以其为中间体得到的氧化物、大环、长链和稠环化合物的国内外合成方法及性能,表明呋咱类化合物爆轰性能优良,具有潜在应用前景;但是,不少硝基取代或多呋咱环衍生物存在安定性差、感度高的缺点.据此,提出设计合成新型钝感高能呋咱衍生物是解决上述不足的有效方法;DAF的合成工艺研究及增大呋咱类化合物开发力度是未来的发展重点.  相似文献   

18.
针对国内外火工品、炸药、发射药、推进剂增材制造技术,按照增材制造的技术特点和应用方向,综述了国内外增材制造技术在火炸药成型中的研究现状。概述了材料喷射成型(Material jetting)、材料挤出成型(Material extruding)、光聚合固化技术(Vat photopolymerization)的成型原理、工艺特点及在火炸药成型中的应用情况,介绍了各类增材制造技术中火炸药的物料特性,并对火炸药增材制造技术发展方向进行了预测。指出火炸药增材制造应按照火炸药的应用背景,对增材制造火炸药配方(即耗材)的能量特性、力学特性、能量释放特性及工艺适配性等进行系统研究,以满足不同应用背景的发展需求。附参考文献97篇。  相似文献   

19.
There are numerous applications for small‐scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter‐diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and to select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small‐scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20) and bis‐triaminoguanidinium(3,3′dinitroazotriazolate) (TAGDNAT).  相似文献   

20.
This paper introduces five novel high‐nitrogen content (N>50%) tetrazole derivatives with desirable physicothermal properties, high detonation and combustion performance as well as suitable sensitivities with respect to external stimuli electric spark and heat. Suitable density functional theory (DFT) and empirical methods were used to predict their crystal density, melting point, condensed phase heat of formation, enthalpy of fusion, Gibbs free energy of formation, velocity of detonation, detonation pressure, Gurney velocity, heat of detonation, power (strength), brisance, impact sensitivity, electric spark sensitivity, heat sensitivity and specific impulse. Two compounds 5,5′‐[(1Z,5Z)‐3,4‐dinitrohexaaza‐1,5‐diene‐1,6‐diyl]bis(1‐nitro‐1H‐tetrazole) and 3,3′,7,7′‐tetranitro‐3,3a,3′,3′a‐tetrahydro‐7H,7′H‐6,6′‐bitetrazolo[1,5‐e]pentazine as compared to the other new derivatives can be introduced as high performance explosives for confined explosion and oxidizers in solid propellants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号