首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The 5'-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.  相似文献   

2.
3.
The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5' untranslated region (5'UTR), the 5' cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5' cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5'UTR are modulated by the viral protein 3CD.  相似文献   

4.
5.
RNA tertiary structures, such as pseudoknots, are known to be biologically significant in a number of virus systems. The 3' untranslated regions of the RNA genomes of all members of the Enterovirus genus of Picornaviridae exhibit a potential, pseudoknot-like, tertiary structure interaction of an unusual type. This is formed by base pairing between loop regions of two secondary structure domains. It is distinct from a potential, conventional pseudoknot, studied previously in poliovirus, which is less conserved phylogenetically. We have analyzed the tertiary structure feature in one enterovirus, coxsackievirus A9, using specific mutagenesis. A double mutant in which the potential interaction was destroyed was nonviable, and viability was restored by introducing compensating mutations, predicted to allow the interaction to reform. Phenotypic pseudorevertants of virus mutants, having mutations designed to disrupt the interaction, were all found to have acquired nucleotide changes which restored the potential interaction. Analysis of one mutant containing a single-base mutation indicated a greatly increased temperature sensitivity due to a step early in replication. The results show that, in addition to secondary structures, tertiary RNA structural interactions can play an important role in the biology of picornaviruses.  相似文献   

6.
7.
The role of the 3' untranslated region (3'UTR) in the replication of enteroviruses has been studied with a series of mutants derived from either poliovirus type 3 (PV3) or a PV3 replicon containing the reporter gene chloramphenicol acetyltransferase. Replication was observed when the PV3 3'UTR was replaced with that of either coxsackie B4 virus, human rhinovirus 14 (HRV14), bovine enterovirus, or hepatitis A virus, despite the lack of sequence and secondary structure homology of the 3'UTRs of these viruses. The levels of replication observed for recombinants containing the 3'UTRs of hepatitis A virus and bovine enterovirus were lower than those for PV3 and the other recombinants. Extensive site-directed mutagenesis of the single stem-loop structure formed by the HRV14 3'UTR indicated the importance of (i) the loop sequence, (ii) the stability of the stem, and (iii) the location of the stem immediately upstream of the poly(A) tail. The role of a 4-bp motif at the base of the HRV14 stem, highly conserved among rhinoviruses, was examined by site-directed mutagenesis of individual base pairs. This analysis did not pinpoint a particular base pair as crucial for function. The requirement for immediate adjacent positioning of the open reading frame and the 3'UTR was examined by insertion of a 1.1-kb heterologous sequence. A replicon containing this insert replicated to about 30% of the level observed for the wild type. However, the corresponding virus consistently deleted most of the inserted fragment, suggesting that its presence was incompatible with a full replication cycle.  相似文献   

8.
9.
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.  相似文献   

10.
The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3′ end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Ψ3) within the 3′-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Ψ3 and a second pseudoknot (Ψ2) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Ψ3 and a pseudoknot that connects H5 and the 3′ end (Ψ1). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3′ end, and subsets containing Ψ3, H4a, and H4b or Ψ3, H4a, H4b, H5, and Ψ2, form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Ψ3, and Ψ2 are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3′ untranslated region sequences such as translation and replication.  相似文献   

11.
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.  相似文献   

12.
13.
14.
We investigated the role of 5' untranslated leader sequences of simian immunodeficiency virus (SIV(mac239)) in RNA encapsidation and protein expression. A series of progressively longer deletion mutants was constructed with a common endpoint six nucleotides upstream of the gag initiation codon and another endpoint at the 3' end of the primer binding site (PBS). We found that efficient intracellular Gag-Pol protein accumulation required the region between the PBS and splice donor (SD) site. Marked reduction of genomic RNA packaging was observed with all the deletion mutants that involved sequences at both the 5' and at the 3' ends of the major SD site, and increased nonspecific RNA incorporation could be detected in these mutants. RNA encapsidation was affected only modestly by a deletion of 54 nucleotides at the 3' end of the SD site when the mutant construct pDelta54 was transfected alone. In contrast, the amount of pDelta54 genomic RNA incorporated into particles was reduced more than 10-fold when this mutant was cotransfected with a construct specifying an RNA molecule with a wild-type packaging signal. Therefore, we conclude that the 175 nucleotides located 5' of the gag initiation codon are critical for efficient and selective incorporation of genomic RNA into virions. This location of the SIV Psi element provides the means for efficient discrimination between viral genomic and spliced RNAs.  相似文献   

15.
We report that the competitive translational activity of alfalfa mosaic virus coat protein mRNA (CP RNA), a nonadenylated mRNA, is determined in part by the 3' untranslated region (UTR). Competitive translation was characterized both in vitro, with cotranslation assays, and in vivo, with microinjected Xenopus laevis oocytes. In wheat germ extracts, coat protein synthesis was constant when a fixed amount of full-length CP RNA was cotranslated with increasing concentrations of competitor globin mRNA. However, translation of CP RNA lacking the 3' UTR decreased significantly under competitive conditions. RNA stabilities were equivalent. In X. laevis oocytes, which are translationally saturated and are an inherently competitive translational environment, full-length CP RNA assembled into large polysomes and coat protein synthesis was readily detectable. Alternatively, CP RNA lacking the 3' UTR sedimented as small polysomes, and little coat protein was detected. Again, RNA stabilities were equivalent. Site-directed mutagenesis was used to localize RNA sequences or structures required for competitive translation. Since the CP RNA 3' UTR has an unusually large number of AUG nucleotide triplets, two AUG-containing sites were altered in full-length RNA prior to oocyte injections. Nucleotide substitutions at the sequence GAUG, 20 nucleotides downstream of the coat protein termination codon, specifically reduced full-length CP RNA translation, while similar substitutions at the next AUG triplet had little effect on translation. The competitive influence of the 3' UTR could be explained by RNA-protein interactions that affect translation initiation or by ribosome reinitiation at downstream AUG codons, which would increase the number of ribosomes committed to coat protein synthesis.  相似文献   

16.
The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.  相似文献   

17.
18.
The 3' untranslated region (3'-UTR) has been implicated in the estrogen stabilization of hepatic Xenopus laevis vitellogenin mRNA. We used RNA gel mobility shift assays to demonstrate that Xenopus liver contains a factor which binds with very high specificity to a segment of the 3'-UTR of vitellogenin B1 and B2 mRNAs. We detected a single high-affinity binding site in the vitellogenin mRNA 3'-UTR and localized the binding site to a 27-nucleotide region. Since binding was abolished by proteinase K digestion, at least a component of the factor is a protein. Following estrogen administration, binding was induced approximately four- to fivefold in extracts from liver polysomes. The hepatic vitellogenin mRNA-binding protein was found in both polysomes and cytosol. Since the protein was also estrogen inducible in cytosol, this represents a genuine induction, not simply recruitment of the cytosolic protein into polysomes. UV cross-linking studies with the 27-nucleotide recognition sequence revealed bands corresponding to bound proteins with apparent molecular weights of 71,000 and 141,000. This appears to be the first example of steroid hormone-inducible proteins binding to an mRNA 3'-UTR. Its induction by estrogen and its sequence-specific binding to a region of vitellogenin mRNA important in estrogen-mediated stabilization suggest that the protein may play a role in the regulation of mRNA stability.  相似文献   

19.
Na H  Fabian MR  White KA 《RNA (New York, N.Y.)》2006,12(12):2199-2210
The 3' untranslated regions (UTRs) of positive-strand RNA viruses often form complex structures that facilitate various viral processes. We have examined the RNA conformation of the 352 nucleotide (nt) long 3' UTR of the Tomato bushy stunt virus (TBSV) genome with the goal of defining both local and global structures that are important for virus viability. Gel mobility analyses of a 3'-terminal 81 nt segment of the 3' UTR revealed that it is able to form a compact RNA domain (or closed conformation) that is stabilized by a previously proposed tertiary interaction. RNA-RNA gel shift assays were used to provide the first physical evidence for the formation of this tertiary interaction and revealed that it represents the dominant or default structure in the TBSV genome. Further analysis showed that the tertiary interaction involves five base pairs, each of which contributes differently to overall complex stability. Just upstream from the 3'-terminal domain, a long-distance RNA-RNA interaction involving 3' UTR sequences was found to be required for efficient viral RNA accumulation in vivo and to also contribute to the formation of the 3'-terminal domain in vitro. Collectively, these results provide a comprehensive overview of the conformational and functional organization of the 3' UTR of the TBSV genome.  相似文献   

20.
Replication of rubella virus is initiated at the 3' end of the genomic RNA. An inverted repeat sequence of 12 nucleotides that is capable of forming a stem-loop structure is located at the 3' end of the RNA, 59 nucleotides upstream from the poly (A) tail. We screened the 158-bp region of the 3' end of the virus, including the stem-loop structure, for its ability to bind to host-cell proteins. Specific high-affinity binding of three cytosolic proteins with relative molecular masses (Mr) of 61, 63 and 68 kD to the stem-loop structure was observed by UV-induced covalent crosslinking. Altering the stem structure by removal of specific bases abolished the binding interactions. The binding of the host proteins is greatly increased after infection and coincides with the appearance of negative strand RNA synthesis. The increase in binding is dependent on new protein synthesis. The amount of the 61-kD protein that binds varies in uninfected cells and is maximal in cells that are in the stationary phase of growth. All binding activity could be abrogated by alkaline phosphatase treatment of cell lysates. A possible role of these host proteins in the replication of rubella virus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号