首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
杜媛英  李明 《润滑与密封》2018,43(12):52-56
以船舶水润滑轴承为研究对象,建立水润滑轴承双向流固耦合模型,采用有限元法研究偏心率为0. 6时,赛龙、飞龙、丁腈橡胶和超高分子聚乙烯4种不同衬层材料水润滑轴承的润滑特性。研究结果表明:转速一定时,4种衬层材料沿轴向和周向的衬层变形分布较为一致,其中丁腈橡胶衬层的变形最大; 4种衬层材料沿轴向和周向的压力分布趋势也较为一致,最大的压力值均出现在210°~270°之间,同时在270°~30°之间水膜压力波动较大。4种衬层材料的摩擦因数均随转速的增大呈现先增大后减小的趋势,其中丁腈橡胶的摩擦因数最大,超高分子聚乙烯的摩擦因数最小。  相似文献   

2.
水润滑飞龙轴承的微观热弹流润滑分析   总被引:1,自引:0,他引:1  
考虑温度场和轴承表面连续余弦波状粗糙度的影响,对水润滑飞龙轴承进行弹流润滑分析;通过数值分析方法求得轴承的完全数值解;分析粗糙度函数的幅值和波长对压力、膜厚的影响。结果表明:考虑表面连续波状粗糙度时压力和膜厚出现波动,最小膜厚减小;粗糙度函数幅值增大,压力变化不明显,膜厚波动增大,最小膜厚减小;粗糙度函数波长增大,压力波动增大,膜厚变化不大。  相似文献   

3.
水润滑轴承润滑介质的黏度较低,轴承动压润滑难以形成。研究水润滑轴承润滑状态转变特性,可为水润滑复合材料轴承的设计和优化提供依据。建立水润滑轴承流固耦合计算模型,研究轴承承载力、水膜压力、轴承变形量随工况的变化关系,提出水膜厚度测试方法,研究轴承摩擦因数、水膜厚度随转速、负载的变化规律。研究结果表明:随偏心率和转速增大,轴承承载力、最大水膜压力和最大变形量均逐渐增大;随转速增大,轴承承载力、最大水膜压力和最大变形量的增幅逐渐减小。试验发现随着负载增大,改性UHMWPE轴承从混合润滑向动压润滑转变的膜厚比逐渐减小。  相似文献   

4.
针对UHMWPE基高分子复合材料水润滑轴承的润滑特性开展研究。采用双向流固耦合算法研究弹性模量和泊松比等材料参数以及转速、负载等工况参数对水润滑轴承偏心率、最大水膜压力、轴承最大变形量、最小水膜厚度、摩擦因数等润滑特性的影响。基于改性UHMWPE高分子复合材料轴承的试验,验证了仿真方法的正确性。研究表明:计入弹性变形的流固耦合算法在研究高分子复合材料轴承性能方面具有更高的精度;随轴瓦材料弹性模量和泊松比的增大,轴承承载力逐渐增大、弹性变形量逐渐减小;随负载增大,轴承最大水膜压力和最大变形量基本呈线性增长;随转速增大,轴承最大水膜压力和轴承最大变形量显著减小;对于高分子复合材料轴承,低速、重载工况下不计入弹性变形的算法误差更大。  相似文献   

5.
侯高强  李明 《润滑与密封》2020,45(6):95-100
为研究新型混合槽水润滑橡胶轴承的润滑特性,采用有限元法建立了橡胶轴承的热流固耦合模型,在考虑不同进水温度和不同转速的条件下,分析了混合槽橡胶轴承与带有T形、V形沟槽的橡胶轴承在衬层变形、水膜压力、流场速度等方面的差异。结果表明:混合槽橡胶轴承能较好地适应水温的变化,解决了T形、V形沟槽橡胶轴承存在的衬层变形大、水膜压力较低的问题,并改善了单一槽型轴承承压区压力峰值急剧变化的问题;随着进水温度的升高,衬层变形量和水膜压力均减小,承载力下降,而且较高转速下承载力的下降趋势比低转速下更为明显;随着进水水温的升高,水的黏性系数持续降低,橡胶轴承的润滑状态变差,轴承润滑状态由混合润滑和弹流润滑状态过渡到完全混合润滑状态。  相似文献   

6.
在特定工况(转速、偏心率等)对水润滑夹心轴承润滑特性影响的基础上,针对双衬层水润滑轴承材料开展研究,建立单向、双向流固耦合动力学模型并比较两者对轴承产生的影响;探究弹性模量、泊松比对轴承承载、水膜压力、衬层变形等静态性能参数的影响规律,揭示流固耦合作用下双衬层水润滑轴承静态性能的变化机制。研究结果表明:随着衬层材料参数的变化,水润滑轴承固体域的静态性能发生较大的变化,流体区域的性能不发生显著的变化。研究结果丰富了双衬层水润滑轴承材料的选择范围,为轴承材料选择提供一定理论依据。  相似文献   

7.
杨浩  欧阳武  金勇  邹群 《润滑与密封》2023,48(11):45-50
为了揭示表面粗糙度对船舶水润滑高分子材料轴承润滑性能的影响规律,开展水润滑轴承弹流混合润滑理论研究;建立考虑内衬材料粗糙度和弹性变形的水润滑轴承混合润滑模型,并对模型进行仿真验证;分析内衬粗糙峰对水膜厚度、水膜压力分布和承载能力的影响规律。研究结果表明:在转速增大的过程中,内衬粗糙度的增大会减缓水膜厚度的增幅比,使轴承需要更高的转速来进入流体动压润滑状态;减小轴承内衬粗糙度能有效降低轴承起飞转速,加快轴承由混合润滑转变为流体动压润滑的过程,减小轴承与轴颈的局部接触,降低轴承异常振动噪声发生的可能性。研究结果揭示了内衬粗糙度变化对轴承润滑特性的影响机制,为水润滑轴承的优化设计提供理论参考。  相似文献   

8.
水润滑赛龙轴承综述   总被引:4,自引:0,他引:4  
赛龙以其抗冲击、耐泥砂、耐磨损、承载力高而逐渐成为一种新兴的水润滑轴承材料。文中简单介绍了水润滑赛龙轴承材料的分类,论述了水润滑赛龙轴承的发展现状以及其结构、特性和优点,并阐述了水润滑赛龙轴承的推广应用前景和研究现状。  相似文献   

9.
表面织构水润滑聚合物轴承承载性能有限元分析   总被引:1,自引:0,他引:1  
应用ADINA有限元方法,对无织构和有织构水润滑聚合物轴承的承载性能进行流固耦合有限元仿真分析,探讨不同内衬材料轴承在不同转速下的水膜压力分布及承载力变化状况,以及材料弹性模量、转速、水膜压力对凹坑表面织构变形的影响规律。仿真结果表明:内衬材料弹性模量对凹坑变形及水膜压力有重要影响,在相同条件下,弹性模量越大,水膜压力及承载力也越大,因此内衬材料应选弹性模量较大的聚合物材料;在相同条件下,有织构轴承的水膜压力和承载力均高于无织构轴承;轴承发散区的织构布置初始角对轴承承载力分布状况有一定影响,随初始角的增大轴承承载力呈现先升高后降低的变化趋势。  相似文献   

10.
采用无限短近似简化Reynolds方程,对飞龙、赛龙及聚四氟乙烯3种新型水润滑径向轴承进行流体润滑的数值分析,探讨载荷和转速对3种轴承的偏心率和偏位角的影响。结果表明:水润滑条件下,不同材料的润滑性能是不同的,其中PTFE材料润滑膜压力及中心膜厚最大,飞龙材料最小;随着转速的增大,3种材料轴承的偏心率均减小,偏位角均增大;随着载荷的增大,3种材料轴承的偏心率增大,偏位角减小;偏心率太大则润滑膜太薄,必然导致过高的轴承温度,对轴承的工作不利。  相似文献   

11.
针对纤维填料改性UHMWPE水润滑轴承的摩擦磨损性能进行研究。在平面摩擦磨损试验机上对玻璃纤维及碳纤维填料对UHMWPE复合材料摩擦性能进行试验,并分析GF-CF-UHMWPE材料与Thordon SXL材料在干摩擦、水润滑工况下的摩擦因数及磨损量。最后,采用径向水润滑轴承试验台对比研究了GF-CF-UHMWPE轴承和Thordon SXL轴承在不同载荷下摩擦因数随转速的变化规律。结果表明:纤维填料能显著增强UHMWPE的减摩性和耐磨性,GF-CF-UHMWPE材料具有更好的耐温性能,线性热膨胀系数也显著减小;GF-CF-UHMWPE轴承具有相同载荷下启动转速低,启动摩擦因数小的特性。  相似文献   

12.
基于ANSYS CFX流固耦合数值计算方法,对水润滑复合材料艉轴承的润滑性能及结构设计开展研究,阐述了不同水槽结构、间隙比、长径比、直径等对轴承承载力以及水膜压力、轴承变形量、最小水膜厚度、轴承摩擦因数的影响规律。并利用水润滑轴承试验台研究了不同水槽结构对轴承启动摩擦转矩、转变速度以及摩擦因数的影响。研究表明,轴承摩擦因数、水膜最大压强、轴承最大变形随水槽数增多而增大;轴承承载力、最小水膜厚度随间隙比增大而减小,随长径比增大而增大。总结了直径为100~500 mm、长径比为2~3、间隙比为0.1%~0.2%的水润滑艉轴承承载力的变化规律,为水润滑艉轴承设计提供一定的理论依据。  相似文献   

13.
为改善丁腈橡胶水润滑轴承的摩擦学性能,以丁腈橡胶为基体,通过添加不同量的超高分子量聚乙烯(UHMWPE)粉末(分别为丁腈橡胶量的12%、50%、100%)制得3种复合材料;分析不同复合材料的结构,研究其在水润滑条件下的摩擦磨损特性,并与纯丁腈橡胶和纯UHMWPE材料进行对比。结果表明:制备的UHMWPE与丁腈橡胶复合材料中,UHMWPE以分散相的形式分布在丁腈橡胶基体中,分布较为均匀;UHMWPE的加入提高了丁腈橡胶材料的自润滑性能,其中UHMWPE的添加量为丁腈橡胶的50%和100%时复合材料在低速时的摩擦因数明显减小;UHMWPE的加入提高了丁腈橡胶基体的硬度,改善了复合材料摩擦表面的挤压变形,使得复合材料的磨损量有所降低。研究表明,一定添加量的UHMWPE添加量可明显改善丁腈橡胶水润滑轴承的摩擦学性能,其最佳添加量为丁腈橡胶的50%。  相似文献   

14.
以活塞式航空发动机滑动轴承为研究对象,综合考虑轴颈倾斜和轴瓦表面形貌等因素对轴承润滑特性的影响,建立滑动轴承润滑分析模型;以高斯随机表面、分形曲面、非高斯随机表面分别模拟轴瓦表面的粗糙程度,分析轴颈不对中和表面粗糙度耦合作用下油膜压力、端泄流量、承载力和轴承力矩等参数随偏心率和转速的变化规律。研究结果表明:考虑轴瓦表面形貌后轴承最大油膜压力变大,最小油膜厚度有小幅度减小;随着偏心率和转速增加,最大油膜压力、端泄流量、轴承承载力、工作力矩均增加;随着偏心率增加,考虑表面形貌时(高斯表面、分形表面、非高斯表面)的轴承油膜压力、承载力、工作力矩均变大;随着转速的增加,考虑表面形貌时的轴承润滑特性均变大,尤其是高斯表面,润滑特性变化较明显。  相似文献   

15.
建立水润滑塑料合金轴承的数学模型,对水润滑条件下塑料合金轴承的弹流润滑问题进行数值模拟,讨论转速和载荷对水润滑膜压力和膜厚的影响。结果表明:在水润滑条件下,转速对水润滑膜的压力影响不明显,而膜厚及最小膜厚随转速的增大而明显增大;随载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚及最小膜厚随载荷增大而减小。  相似文献   

16.
根据角接触球轴承自旋运动特征,同时考虑弹流润滑效应,建立角接触球轴承考虑自旋运动的弹流润滑模型;采用多重网格法求解弹性变形,利用有限差分法迭代求解雷诺方程,得到较为精确的数值解;分析不同赫兹接触压力、滚道表面粗糙度下自旋对角接触球轴承弹流润滑和油膜刚度的影响。结果表明:考虑自旋时随着Hertz接触压力、自旋角速度增大,油膜厚度减小,油膜压力增大,油膜承压区域呈细长状,并向接触中心靠近;随着滚道表面粗糙度幅值增大,油膜压力和膜厚均出现了波动,且考虑自旋运动时,轴承油膜厚度明显减小,油膜局部压力峰值更大;随着卷吸速度、润滑油黏度增大,油膜刚度减小,而考虑自旋运动时油膜刚度值更大;随着自旋角速度增大,油膜刚度逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号