首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ITER neutral beam system is using inductively coupled radio frequency (RF) ion sources, that have demonstrated the required ITER parameters on (small) sources with extraction areas up to 200 cm2. As a next step towards the full size ITER source IPP is presently constructing the test facility ELISE (“Extraction from a Large Ion Source Experiment”) operating with a “half-size” source which has approximately the width but only half the height of the ITER source. The modular driver concept is expected to allow a further extrapolation to the full size in one direction to be made. The main aim of this experiment is to demonstrate the production of a large uniform negative ion beam with ITER relevant parameters in stable conditions up to one hour.Plasma operation of the source is foreseen to be performed continuously for 1 h; extraction and acceleration of negative ions up to 60 kV is only possible in pulsed mode (10 s every 180 s) due to limitations of the existing IPP HV system. The design of the source and extraction system implements a high experimental flexibility and a good diagnostic access while still staying as close as possible to the ITER design. The main differences are the source operating in air and the use of a large gate valve between the source and the target chamber.ELISE is expected to start operation at the end of 2011 and is an important step for the development of the ITER NBI system; the experience gained early will support the design as well as the commissioning and operating phases of the PRIMA NBI test facilities and the ITER neutral beam system.  相似文献   

2.
The new test facility ELISE (Extraction from a Large Ion Source Experiment) has been designed and installed since November 2009 at IPP Garching to support the development of the radio frequency driven negative ion source for the Neutral Beam System on ITER. The test facility is now completely assembled; all auxiliary systems have been commissioned and are operational. First plasma and beam operation is starting in October 2012.The source is designed to deliver an ion beam of 20 A of D? ions, operating at 0.3 Pa source pressure at an electron to ion current ratio below 1. Beam extraction is limited to 60 kV for 10 s every 3 minutes, while plasma operation of the source can be performed continuously for 1 hour. The ion source and extraction system have the same width as the ITER source, but only half the height, i.e. 1 × 1 m2 source area with an extraction area of 0.1 m2. The aperture pattern of the extraction system and the multi driver source concept stay as close as possible to the ITER design. Easy access to the source for diagnostic tools or modifications allows to analyze and optimize the source performance. Among other possibilities many different magnetic filter field configurations inside the source can be realized to enhance the negative ion extraction and to reduce the co-extraction of electrons. Beam power and profiles are measured by calorimetry and thermography on an inertially cooled target as well as by beam emission spectroscopy. Cs evaporation into the source is done via two dispenser ovens.  相似文献   

3.
In the framework of the strategy for the development and the procurement of the NB systems for ITER, it has been decided to build in Padova a test facility, including two experimental devices: a full size plasma source with low voltage extraction and a full size NB injector at full beam power (1 MV). These two different devices will separately address the main scientific and technological issues of the 17 MW NB injector for ITER. In particular the full size plasma source of negative ions will address the ITER performance requirements in terms of current density and uniformity, limitation of the electron/ion ratio and stationary operation at full current with high reliability and constant performances for the whole operating time up to 1 h. The required negative ion current density to be extracted from the plasma source ranges from 290 A/m2 in D2 (D?) and 350 A/m2 in H2 (H?) and these values should be obtained at the lowest admissible neutral pressure in the plasma source volume, nominally at 0.3 Pa. The electron to ion ratio should be limited to less than 1 and the admissible ion inhomogeneity extracted from the grids should be better than 10% on the whole plasma cross-section having a surface exposed to the extraction grid of the order of 1 m2.The main design choices will be presented in the paper as well as an overview of the design of the main components and systems.  相似文献   

4.
IPP Garching is currently developing a negative hydrogen ion RF source for the ITER neutral beam system. The source demonstrated already current densities in excess of the ITER requirements (>200 A/m2 D) at the required source pressure and electron/ion ratio, but with only small extraction area and limited pulse length. A new test facility (RADI) went recently into operation for the demonstration of the required (plasma) homogeneity of a large RF source and the modular driver concept.The source with the dimension of 0.8 m × 0.76 m has roughly the width and half the height of the ITER source; its modular driver concept will allow an easy extrapolation in only one direction to the full size ITER source. The RF power supply consists of two 180 kW, 1 MHz RF generators capable of 30 s pulses. A dummy grid matches the conductance of the ITER source. Full size extraction is presently not possible due to the lack of an insulator, a large size extraction system and a beam dump.The main parameters determining the performance of this “half-size” source are the negative ion and electron density in front of the grid as well as the homogeneity of their profiles across the grid. Those will be measured by optical emission and cavity ring down spectroscopy, by Langmuir probes and laser detachment. These methods have been calibrated to the extracted current densities achieved at the smaller source test facilities at IPP for similar source parameters. However, in order to get some information about the possible ion and electron currents, local single aperture extraction with a Faraday cup system is planned.  相似文献   

5.
The RF based single driver ?ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 1012 cm?3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm2 as observed in BATMAN.In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 1011 cm?3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.  相似文献   

6.
7.
The neutral beam injection (NBI) system was designed to provide plasma heating and current drive for high performance and long pulse operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) device using two co-current beam injection systems. Each neutral beam injection system was designed to inject three beams using three ion sources and each ion source has been designed to deliver more than 2.0 MW of deuterium neutral beam power for the 100-keV beam energy. Consequently, the final goal of the KSTAR NBI system aims to inject more than 12 MW of deuterium beam power with the two NBI for the long pulse operation of the KSTAR. As an initial step toward the long pulse (~300 s) KSTAR NBI system development, the first neutral beam injection system equipped with one ion source was constructed for the KSTAR 2010 campaign and successfully commissioned. During the KSTAR 2010 campaign, a MW-deuterium neutral beam was successfully injected to the KSTAR plasma with maximum beam energy of 90 keV and the L-H transition was observed with neutral beam heating. In recent 2011 campaign, the beam power of 1.5 MW is injected with the beam energy of 95 keV. With the beam injection, the ion and electron temperatures increased significantly, and increase of the toroidal rotation speed of the plasma was observed as well. This paper describes the design, construction, commissioning results of the first NBI system leading the successful heating experiments carried in the KSTAR 2010 and 2011 campaign and the trial of 300-s long pulse beam extraction.  相似文献   

8.
A neutral beam injection (NBI) system is being built for the Stellarator experiment Wendelstein 7-X (W7-X) currently under construction at IPP Greifswald. The NBI system consists of two injectors which are essentially a replica of the system present in the Tokamak experiment ASDEX-Upgrade at IPP Garching. A vacuum system with high pumping speed and large capacity is required to ensure proper vacuum conditions in the neutral beam line. For this purpose, large titanium sublimation pumps (TSP) are installed inside the NBI boxes, consisting of 4 m long hanging wires containing Ti and the surrounding condensation walls. The wires are DC ohmically heated up with 142 A to Ti sublimation temperature. A TSP system has been operated since many years in the AUG-NBI system, sublimating Ti in the pauses between the plasma discharges, when no magnetic field is present. However, at W7-X the superconducting coils generate a magnetic field permanently during experimental campaigns, whose stray B field with a maximum of 30 mT, affects the TSPs. Operated with DC, the wires would be deflected against the surrounding panels due to the Lorentz force. A simple possible solution is heating with AC, which reduces the wire deflection amplitude, inducing a risky wire oscillation. The feasibility of the AC operation in an equivalently strong B field such as the stray B field around W7-X has been demonstrated in a test stand for different AC waveforms and frequencies. Several test campaigns have shown no qualitative difference in the pumping properties between AC and DC operation of the TSP and no critical dynamic behaviour of the wires.  相似文献   

9.
The ITER Heating Neutral Beam injectors will be implemented in three steps: development of the ion source prototype, development of the full injector prototype, and, finally, construction of up to three ITER injectors. The first two steps will be carried out in the ITER neutral beam test facility under construction in Italy. The ion source prototype, referred to as SPIDER, which is currently in the development phase, is a complex experiment involving more than 20 plant units and operating with beam-on pulses lasting up to 1 h. As for control and data acquisition it requires fast and slow control (cycle time around 0.1 ms and 10 ms, respectively), synchronization (10 ns resolution), and data acquisition for about 1000 channels (analogue and images) with sampling frequencies up to tens of MS/s, data throughput up to 200 MB/s, and data storage volume of up to tens of TB/year. The paper describes the architecture of the SPIDER control and data acquisition system, discussing the SPIDER requirements and the ITER CODAC interfaces and specifications for plant system instrumentation and control.  相似文献   

10.
The ITER [1] fusion device is expected to demonstrate the feasibility of magnetically confined deuterium–tritium plasma as an energy source which might one day lead to practical power plants. Injection of energetic beams of neutral atoms (up to 1 MeV D0 or up to 870 keV H0) will be one of the primary methods used for heating the plasma, and for driving toroidal electrical current within it, the latter being essential in producing the required magnetic confinement field configuration. The design calls for each beamline to inject up to 16.5 MW of power through the duct into the tokamak, with an initial complement of two beamlines injecting parallel to the direction of the current arising from the tokamak transformer effect, and with the possibility of eventually adding a third beamline, also in the co-current direction. The general design of the beamlines has taken shape over the past 17 years [2], and is now predicated upon an RF-driven negative ion source based upon the line of sources developed by the Institute for Plasma Physics (IPP) at Garching during recent decades [3], [4], [5], and a multiple-aperture multiple-grid electrostatic accelerator derived from negative ion accelerators developed by the Japan Atomic Energy Agency (JAEA) across a similar span of time [6], [7], [8]. During the past years, the basic concept of the beam system has been further refined and developed, and assessment of suitable fabrication techniques has begun. While many design details which will be important to the installation and implementation of the ITER beams have been worked out during this time, this paper focuses upon those changes to the overall design concept which might be of general interest within the technical community.  相似文献   

11.
The energy of future neutral beam injector (NBI) heating systems of fusion power plants ranges from 1 to 2 MeV. They are based on powerful (several tens of MW) hydrogen negative ion electrostatic accelerators where electrodes are polarized by DC high-voltage. The beam line under vacuum is supplied by HV power supplies via a transmission line pressured under SF6 and a high voltage feedthrough called bushing. The paper presents results obtained over experimental campaigns dedicated to high voltage vacuum insulation for future NBI systems (ITER). It addresses the problematic of the electron field emission and the high voltage breakdown limit under vacuum between large electrode surfaces. The paper highlights the dependence of the electron emission (dark current) with the voltage and the background tank pressure: at low pressure (~1E?3 Pa in hydrogen), an important dark current of I  100 mA has been measured at 500 kV, while at higher pressure (~0.3 Pa in helium), the dark current has been nearly suppressed (less than 3 mA of dark current at 970 kV). The paper shows that a field induced gas adsorption process could occur on the emitting surfaces (cathode), and this process tends to lower the electron field emission current by increasing the work function of the electrode surface. The Fowler–Nordheim law applied to the measured dark current indicates about 70% of work function increase at 0.3 Pa in helium. Finally, a new high-voltage bushing concept relevant to the future NBI systems is presented; it is based on these experimental findings in high voltage vacuum insulation; the main feature of the new bushing concept is to take benefit of the field induced adsorption effect, i.e., the suppression of the dark current with helium gas, in the inner part of the bushing where the electric field intensity is highest.  相似文献   

12.
《Fusion Engineering and Design》2014,89(9-10):2141-2144
The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA, reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D–T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating targets. NSFS produces about 1 × 1013 n cm−2 s−1 over about 50 cm3. Larger volumes of lower neutron flux will be available (e.g. for TBM experiments) as well as collimated channels to study some features of the ITER neutron camera. The NSFS facility will overcome problems related to the ion source and accelerating system, by means of an upgraded version of the JET–PINI ion beams. NSFS has to be intended as an European facility that may be realized in a few years, once provided a preliminary technological program devoted to the operation of the ion source in continuous mode, target heat loading/removal, target and tritium handling, inventory as well as site licensing. In this contribution, the main characteristics of NSFS project will be presented.  相似文献   

13.
This article reviews 10 years of engineering and physics achievements by the Large Helical Device (LHD) project with emphasis on the latest results. The LHD is the largest magnetic confinement device among diversified helical systems and employs the world's largest superconducting coils. The cryogenic system has been operated for 50,000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of NBI, 2.9 MW of ICRF and 2.1 MW of ECH. Negative-ion-based ion sources with the accelerating voltage of 180 keV are used for a tangential NBI with the power of 16 MW. The ICRF system has full steady-state operational capability with 1.6 MW. In these 10 years, operational experience as well as a physics database have been accumulated and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantage of helical systems in LHD. Highlighted physical achievements are high beta (5% at the magnetic field of 0.425 T), high density (1.1 × 1021 m?3 at the central temperature of 0.4 keV), high ion temperature (Ti of 5.2 keV at 1.5 × 1019 m?3), and steady-state operation (3200 s with 490 kW). These physical parameters have elucidated the potential of net-current free helical plasmas for an attractive fusion reactor. It also should be pointed out that a major part of these engineering and physics achievements is complementary to the tokamak approach and even contributes directly to ITER.  相似文献   

14.
In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out.Results coming from ongoing R&D on IPP test beds [A. Stäbler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design.An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering.The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections.In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.  相似文献   

15.
The JET neutral beam injection (NBI) system is undergoing an upgrade of both beam power and pulse duration, which will be completed in 2011. In order to obtain an early assessment of the performance of the upgraded injectors, two positive ion neutral injectors (PINIs) with modified ion source and accelerator configuration were installed on Octant 8 Neutral Injector Box and successfully commissioned in summer 2009. Both PINIs were routinely delivering ~2 MW of deuterium neutral beam power during the JET experimental campaign in autumn 2009. These early tests allowed us to predict with confidence that the JET NBI upgrade objective of injecting 34 MW of total deuterium neutral beam power into the JET plasma will be achieved.  相似文献   

16.
The stellarator W7-X will be equipped with two Neutral-Beam-Injector (NBI) boxes for balanced injection. Each NBI box has 2 tangential and 2 radial source positions. For the experimental start-up phase each NBI box will be only equipped with 2 ion sources. For the selection of the initial 2 NBI source positions per box three physical aspects were examined (transmission and duct power deposition, shine through and heating efficiency).Using hydrogen injection the heating power to the plasma under typically planned conditions should be 1.3 MW for the tangential sources and 1.1 MW for the radial sources (deuterium: 2 MW for the tangential sources, 1.8 MW for the radial sources). The tangential source positions all have similar heating efficiencies. One of them suffers from the lowest duct transmission (highest power-load to the duct). The same source hits a component with a low power-load capability. The W7-X inner wall design will be modified in order to enhance the maximum power-load capability of that component. For the radial source positions there is no clear physics advantage of one position over the other. Taking all aspects into consideration the decision was made to use one tangential source and one radial source per box during the experimental start-up phase.  相似文献   

17.
The Neutral Beam Test Facility (NBTF) to be realized in Padoa will test the Neutral Beam Injection (NBI), one of the Heating and Current Drive Systems foreseen for ITER. The NBI is based on the acceleration of hydrogen or deuterium negative ions up to 1 MeV. This work has been aimed at assessing the tritium release from the NBTF in order to provide data for the safety analysis. In particular, the diffusion of the tritium through the neutral beam target material (the CuCrZr alloy calorimeter panels) has been assessed by using literature data of the diffusion coefficient. The tritium generated inside the calorimeter panels moves into both the vacuum and water side: the tritium diffusion flux has been evaluated during the beam-on (200 °C) and the beam-off (20 °C) phases of the NBTF experiments consisting of an interim campaign and a final test. The penetration depth of the tritium through the 2 mm thick CuCrZr alloy material has been also evaluated by using a Monte-Carlo code. As main result, the assessed diffusion flux of tritium during both the beam-on and the beam-off phases are modest. In fact, at the end of the interim campaign (100 days), about the 96% of the all generated tritium (626.5 MBq) exits the calorimeter while the residual tritium inventory (25 MBq) leaves the copper alloy with a diffusion time of about 1 month. At the end of the final test (14 days) about the 99% of the total generated tritium (1.023 × 104 MBq) leaves the copper alloy and the remaining tritium inventory (152.2 MBq) is released by about 32 days. In both the interim campaign and the final test, more than the 99% of the total tritium is transferred into the vacuum side of the calorimeter panel while negligible tritium amounts enter the cooling water system thus showing a very low impact on the environment.  相似文献   

18.
The HL-2 M tokamak is now under construction in Southwestern Institute of Physics in China. As one of the main auxiliary heating systems for HL-2 M tokamak, a new NBI beam line with 5 MW NBI power, 42° injection angle, based on 4 sets of 80 kV/45 A/5 s bucket ion sources with geometrical beam focus, is conceptually designed with geometrical calculation and engineering simulations. The preliminary structure and layout of key components including ion sources, neutralizers, ion dumps, deflection magnet, beam edge scraper, long pulse calorimeter target, short pulse calorimeter target, injection port and beam drift duct are determined. The magnetic shielding of the stray field of HL-2 M tokamak is analyzed. Beam power transmission efficiency is calculated with geometrical algorithm. The ratio of neutral beam injection power to ion beam power is as high as 48%.  相似文献   

19.
The TPE-RX Neutral Beam Injector, which provides a 25 keV positive ion beam energy with a maximum current of 50 A for a pulse duration of 30 ms, will be installed on RFX-mod thanks to the agreement with the AIST Institute of Tsukuba (Japan). The main scientific objective is the study of the behavior of the fast ions, which in the RFP helical equilibrium have exhibited very long confinement times.The integration of TPE-RX NBI on RFX-mod requires the development of several new components: a mechanical interface between the RFX-mod vacuum vessel and neutralizer; a Magnetic Residual Ion Dump; a new vacuum pumping system designed to maximize pumping and minimize beam stopping due to reionization.As regards the power supplies the compliance of the Japanese equipment to the Italian safety rules has been considered and layout studies have been carried out; the integration of the NBI control system in the RFX timing sequence has been studied as well.  相似文献   

20.
The 100 keV Ion Source Test facility – Source for the Production of Ions of Deuterium Extracted from RF plasma (SPIDER) – is aimed to test the full scale prototype of the Ion Source for the ITER 1 MeV Neutral Beam Injector (NBI). The SPIDER facility requires the construction of a High Voltage Deck (HVD) and of a High Voltage Transmission Line (TL) respectively to host the Ion Source Power Supplies system polarized at 100 kV and to carry the power and signal conductors to the beam accelerator.In already existing NBI systems with beam energy above 100 keV, the TL is realized with the SF6 Gas Insulated Line technology. In the SPIDER TL case, the presence of a large inner conductor (half meter diameter), would make the pressurized TL a complex and costly component; therefore a free air insulated solution has been proposed. The paper focuses on the design of this TL, which has to host inside the complex high potential (100 kV) inner electrode a number of power and measuring conductors and has to minimize the Electro Magnetic Interferences (EMI) produced by the frequent grids breakdowns.Finite Element (FE) analyses have been performed to verify the configuration from the electrostatic point of view, to evaluate EMI screening effectiveness and to assess the impact of the relatively high thermal dissipation of power conductors located inside the high potential electrode. Moreover, an experimental test campaign has been carried out on a TL mockup to validate the TL electrostatic configuration under DC voltage. Finally, the paper reports on the status of procurement activities for the Transmission Line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号