首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用共沉淀法制备TiO2-SnO2固溶体,浸渍法负载CeO2得到一系列xCeO2/TiO2-SnO2负载型催化剂,在模拟NH3选择性催化还原NOx(NH3-SCR)反应条件下考察催化剂低温脱硝活性。通过X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、程序升温脱附(NH3-TPD)、高分辨率透射电子显微镜(HRTEM)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等表征技术,研究了氧化铈负载后催化剂的微观结构、表面物种的存在状态、表面酸位等表面性质及NH3吸附特性。结果表明,Ce:Ti物质的量比为0.1时,催化剂催化脱硝反应活性最高,同时具有较宽的温度窗口(250~300℃)和热稳定性;铈的过量负载会导致催化剂比表面积减小、活性窗口变窄,同时其氧化还原能力和NH3吸附能力也减弱。NH3-TPD结果显示,CeO2的负载导致催化剂NH3在弱酸及中等酸位的吸附显著增强,与催化剂NH3-SCR最佳反应物温度降低有关。in situ DRIFTS表明,xCeO2/TiO2-SnO2催化剂的Lewis酸位和Brønsted酸位强度均明显增强,同时,在1657~1666cm-1处出现新的Brønsted酸位,参与SCR反应的主要物质是NH4+分子。  相似文献   

2.
为实现低温(200-250℃) NH_3-SCR烟气脱硝,开发出了一种高分散暴露CeO_2不同晶面的VO_x-MnO_x/CeO_2低温脱硝催化剂。脱硝性能评价实验结果表明,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂在很宽的温度范围内(220-330℃)都保持了95%的脱硝效率。原位漫反射红外分析结果可知,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂表面更易发生NH_3和NO吸附,进而提高NO的转化效率。气态NH_3在VO_x-MnO_x/CeO_2-R催化剂上吸附生成NH_3(L)和NH_4~+(B),该中间体与NO吸附的中间体桥联硝酸盐和双齿硝酸盐反应生成N_2和H_2O,并遵循Langmuir-Hinshelwood机理。  相似文献   

3.
采用共浸渍法制备了Mn/Ti-PILC和La掺杂的Mn-La/Ti-PILC(k为La和Mn物质的量比,k=0/1、1/4、1/12和1/20)四种催化剂。研究了La的掺杂对催化剂的低温脱硝效率的影响,同时通过BET、H2-TPR、NH3-TPD和XRD等方法对催化剂进行表征。结果表明,La的掺杂使催化剂的还原温度向低温方向迁移,氧化还原能力得到了提高,催化剂的表面酸量得到提高;La的掺杂有利于催化剂活性的提高,其中,Mn-La/Ti-PILC(k=1/12)催化剂的低温SCR的脱硝活性最高。  相似文献   

4.
以醋酸锰为前驱物通过浸渍法制备了MnOx/TiO2催化剂,用WO3对载体进行改性制得一系列MnOx-WO3/ TiO2催化剂,采用X射线衍射(XRD)、比表面积测定(BET)、拉曼光谱(LRS)、原位红外(FT-IR)光谱等表征技术进行相关的微观表征分析,同时在模拟氨气选择性催化还原NOx(NH3-SCR)的反应条件下对催化剂的脱硝反应活性进行了考察。研究表明,添加5%的WO3拓展了载体的比表面积,提高了催化剂的抗热性,增加了催化剂表面的Brnsted酸位,拓宽其选择性催化还原脱硝活性温度窗口,对MnOx/TiO2催化剂有很好的改性作用;先钨后锰的负载顺序优于先锰后钨;随着温度的升高,化学催化反应速率提高,催化剂表面NH3吸附峰呈减弱或消失趋势,故催化剂脱硝活性温度曲线呈中间高、两头低。  相似文献   

5.
采用浸渍法制备了五种掺杂不同比例的Ho的低温选择性催化还原(SCR)催化剂Mn0.4Ce0.07Hox/TiO_2。研究了Ho的引入对于Mn-Ce/TiO_2催化剂低温脱硝性能的影响,并采用XPS、XRF、BET、XRD、NH3-TPD等手段对催化剂的物理化学性质进行表征。结果表明,掺杂适量的Ho能够有效提高Mn-Ce/TiO_2催化剂的低温脱硝性能,当Ho/Ti掺杂比例为0.1时催化剂Mn0.4Ce0.07Ho0.1/TiO_2活性表现最佳,在200℃左右催化效率达到最高,为91.17%,在140-240℃催化效率达到80%以上。结果表明,Ho的掺杂能够增大催化剂的比表面积,提高催化剂化学吸附氧的浓度以及Ce的附着量。  相似文献   

6.
采用溶胶凝胶法制备了Mn-Ce/TiO_2低温SCR催化剂,考察了碱金属浓度与种类对催化剂活性的影响,探究了不同反应条件下钠盐沉积对活性保留分率的影响,利用SEM、BET、XRD和FT-IR对催化剂碱金属中毒原因进行了分析。结果表明,碱金属毒化后催化剂脱硝活性下降,钾中毒催化剂失活程度高于钠中毒的催化剂,2%钾中毒催化剂在160℃时NO去除率为62.0%,较新鲜催化剂下降29.2%。这主要因为碱金属毒化造成催化剂比表面积明显减小,且催化剂载体锐钛矿型TiO_2部分转化为金红石型,BET和SEM表征均说明碱金属沉积堵塞了催化剂表面的微孔。碱金属对Mn-Ce/TiO_2催化剂活性保留分率的影响表明,催化剂的颗粒粒径对其活性保留分率影响不大,碱金属含量减小、温度升高,Mn-Ce/TiO_2催化剂的活性保留分率增加,Na_2SO_4和NaCl对Mn-Ce/TiO_2催化剂的脱硝活性抑制作用大于KNO_3。  相似文献   

7.
考察了SO_2对Mn-Ce/TiO_2低温脱硝催化剂活性的影响,利用XRD、BET、SEM和XPS对其毒化作用的原因进行分析。结果表明,SO_2对催化剂活性有明显的抑制作用,使NO_x去除率由84%降至42%左右。主要是SO_2的加入造成催化剂比表面积减小,孔径为5-10 nm的孔数量减少,且催化剂晶相由锐钛矿型转化成金红石型结构,活性组分MnO_x发生晶化现象,破坏了Mn-Ti间的强相互作用。催化剂理化性质的变化造成吸附态氧转化为晶格氧的路径受阻、MnO_2含量减少和CeO_x储氧功能减弱,并且产生氧阻效应而使NO吸附和解吸受阻,造成催化剂活性降低。同时生成的硫酸铵盐在催化剂表面沉积,覆盖了催化剂表面的Lewis酸性位,使其对NH_3吸附能力减弱。  相似文献   

8.
采用浸渍法制备了三种具有不同载体的锰基NH3低温选择性催化还原(NH3-SCR)催化剂Mn/Ce-ZrO2、Mn/P25和Mn/Al2O3。研究了三种催化剂低温SCR脱硝活性及抗H2O、抗SO2性能,并采用XRD、NH3-TPD和H2-TPR手段对催化剂的物理化学性质进行表征。结果表明,在无H2O和SO2存在的情况下,三种催化剂的低温SCR催化活性均比较高。相对来说,Mn/Ce-ZrO2在低温段(100~160℃)活性更高,Mn/P25在高温段(160~220℃)活性更高,这与两种催化剂的氧化还原性质有关。H2-TPR表征表明,Mn/Ce-ZrO2更容易发生氧化还原反应,而Mn/P25还原峰对应的温度较高、面积较大。三种催化剂均有很高的低温抗水性能。另外,Mn/Ce-ZrO2的抗H2O、抗SO2性能最好,而Mn/P25的抗H2O、抗SO2性能最差。Mn/Ce-ZrO2具有较好的抗H2O、抗SO2性能是由于其具有较多的表面酸位点,且表面生成的硫铵盐不稳定。  相似文献   

9.
采用浸渍法制备了MnO_x/Al_2O_3低温脱硝催化剂,研究了Mn的含量对MnO_x/Al_2O_3催化剂低温烟气中NOx脱除率的影响,并通过XRD、SEM、BET、XPS、NH_3-TPD和H_2-TPR等手段对催化剂进行了表征.结果表明,当Mn含量为9%,空速为45 000 h-1时,MnO_x/Al_2O_3催化剂NO_x脱除率最高,在220℃时达79%;9MnO_x/Al_2O_3催化剂表面MnO_x氧化物分散较均匀,且稳定性及抗H_2O性能较好,但抗SO_2性能有待提高;MnO_x/Al_2O_3催化剂孔径主要分布在4~20 nm范围内,Mn含量对催化剂孔径变化影响较小;催化剂中活性组分Mn主要以Mn~(3+)和Mn~(4+)的形式存在;Mn~(4+)和Oα含量增加有利于NO_x的脱除;且添加Mn后,活性酸位点的数量增长,增强了催化剂还原能力,促进了NO_x脱除率的增加.  相似文献   

10.
研究了氧化还原预处理对溶胶-凝胶法制备的CeO2-TiO2复合氧化物负载Pd催化剂上CO低温氧化性能的影响,并对催化剂的稳定性进行了考察。H2-TPR结果表明,83 ℃的耗氢峰是PdO和载体中CeO2共同还原的结果,高温还原后Pd与载体之间相互作用加强。经高温氧化(500 ℃)低温还原(150 ℃)预处理的催化剂CO低温氧化活性最好,在反应气组成为0.5% CO+1.6% O2+6.0%N2+Ar,空速为30 000 mL·g-1·h-1,程序升温反应显示CO完全转化温度为48 ℃,这种预处理方式能够形成适宜的载体与金属间相互作用。稳定性实验在室温下进行,反应气组成为0.6% CO+14.7% O2+55.3%N2+Ar,Pd/CeO2-TiO2催化剂具有较好的低温反应稳定性,100%CO转化率可持续12 h。  相似文献   

11.
Loaded catalysts of 10–50% (w/w) urea loaded on activated carbon fibers (ACF), referred to as urea/ACF, and 10%urea–5–15% (w/w) La2O3/ACF and CeO2/ACF were prepared by an impregnation method and used for removal of NO at low temperature (30–120°C). The experimental results showed that the catalytic activity of urea/ACF could be greatly improved by loaded rare-earth element oxides. Furthermore, 10%urea–5%La2O3/ACF and 10%urea–10%CeO2/ACF could maintain high and stable catalytic activity at 100°C.  相似文献   

12.
SO2和NO对ACF低温脱除模拟燃煤烟气中VOC的影响   总被引:1,自引:0,他引:1  
采用H2O2浸渍的方法对活性炭纤维(ACF)进行改性,并利用氮吸附等温线和XPS(X-ray photoelectron spectroscopy)的方法对ACF样品进行表征。通过实验测定改性前后ACF脱除VOC(甲苯作为VOC的代表物)的效果,同时考察二氧化硫(SO2)和一氧化氮(NO)对ACF脱除甲苯的影响。研究发现,双氧水浸渍改性对ACF的BET表面积和孔容没有影响,但使得ACF样品表面的含氧官能团含量大量增加。实验数据也表明,SO2和NO对VOC在ACF上的吸附具有抑制作用,且随着两者浓度的增加,抑制作用也增强。 研究还发现,SO2和NO同时存在比单一的SO2或NO对VOC在ACF上吸附的抑制作用更为明显。  相似文献   

13.
CeO2对低氟连铸保护渣转折温度和结晶性能的影响   总被引:1,自引:0,他引:1  
研究了低氟条件下,稀土氧化物CeO2对连铸保护渣转折温度和结晶性能的影响,同时与常规的高氟连铸保护渣性能进行了对比分析。结果表明:在碱度R较低的条件下,随着CeO2含量的升高,转折温度和结晶温度均有先下降后上升的趋势;在碱度较高的情况下,CeO2的加入将明显提高连铸保护渣的转折温度和凝固温度。  相似文献   

14.
采用浸渍法在不同Ce掺杂量时制备了用于湿式H2O2降解吡虫啉农药废水的Cu-Ni-Ce/SiO2催化剂, 利用BET、 SEM、 XRD和XPS等对其进行了表征, 并研究了Ce掺杂量对催化剂表面形态的影响以及催化剂表面形态与活性及稳定性之间的关系.结果表明: 适量添加Ce后, 催化剂晶粒尺寸减小, 比表面积增加, Cu、 Ni固溶体量和催化剂表面化学吸附氧量增加, 而且活性组分的分散性增加. 湿式H2O2降解吡虫啉农药废水时, 在催化剂用量10 g/L、反应温度110 ℃、双氧水用量为理论需用量、进水pH为9.0、反应60 min条件下, 0.16%Ce掺杂量的Cu-Ni-Ce/SiO2的催化剂的活性比相同工艺条件的无Ce添加的催化剂活性提高了7.2%, 活性组分溶出量也大为减少.  相似文献   

15.
CeO2和Pd在Ni/γ-Al2O3催化剂中的助剂作用   总被引:3,自引:0,他引:3  
采用脉冲微反技术研究了添加n型半导体氧化物CeO2及贵金属Pd对Ni/γ-Al2O3催化剂上CH4积炭/CO2消炭反应性能的影响,并运用BET、TPR、CO2-TPSR及氢吸附等技术对催化剂进行了表征.结果表明,n型半导体氧化物CeO2的添加可以降低Ni/γ-Al2O3催化剂上CH4裂解积炭活性,提高CO2消炭活性,添加少量贵金属Pd可以进一步改变载体Al2O3、助剂CeO2和活性组分Ni之间的相互作用,从而改善Ni/γ-Al2O3催化剂的抗积炭性能.通过Ni-Ce-Pd/γ-Al2O3催化剂上CH4积炭/CO2消炭模型对上述作用机制作出了新的解释.  相似文献   

16.
以硝酸铈为原料,碳酸氢铵为沉淀剂,用微波加热的方法制备了纳米CeO2超细粉体,用X射线衍射法和透射电子显微镜等检测手段进行表征,结果表明,微波法制备样品的平均晶粒度为8nm,而传统加热法则为16nm,反应时间由60分钟缩短为5分钟,并提高了颗粒的分散性.  相似文献   

17.
The Co-modified CeO2-TiO2 catalyst prepared by facile co-precipitation was used for efficient elemental mercury oxidation in flue gas. Results indicated that Co doping greatly enhanced the activity and SO2 resistance of the CeO2-TiO2 catalyst. In the presence of 5% O2, 500 ppm NO, 800 ppm SO2 and 3% H2O at 200 °C, the Hg0 removal efficiency of CeCo3/Ti could maintain at about 87% for a relatively long time. Characterizations of catalysts (BET, XRD, Raman spectroscopy, TEM, H2-TPR, O2-TPD, XPS, TG-MS and SO2-DRIFTS) were carried out to reveal the mechanism of Co modification on the redox ability, SO2 resistance and resultant mercury oxidation removal performance of catalyst. It was found that an interaction of Ce with Co promoted the dispersion of CeO2, increased chemisorbed oxygen concentration, and improved the oxygen storage capacity and the reducibility of catalyst, which was beneficial to the improvement of Hg0 oxidation removal. Hg0 would adsorb onto the catalyst and react with surface active oxygen species replenished by gas-phase O2 to be oxidized via Mars-Maessen mechanism. SO2 consumed the surface active oxygen species and resulted in the reduction of Ce4+ to Ce3+, which induced the deactivation of catalyst. The introduced Co in CeO2-TiO2 catalyst exerted the function of protecting Ce4+ from being poisoned by SO2 and thus promoted the sulfur resistance and Hg0 removal performance of the catalyst in the presence of SO2.  相似文献   

18.
甲醇在CeO2担载Pd催化剂上分解机理的研究   总被引:9,自引:0,他引:9  
采用原位红外(in-situFTIR)技术对甲醇在CeO2和Pd/CeO2催化剂上的吸附和反应进行了研究,提出一个新的甲醇分解反应机理模型.甲醇在CeO2上容易吸附并结合其晶格氧生成甲酸盐物种,而甲醇分解的产物氢被Pd活化后,溢流到CeO2上促进了甲酸盐物种的分解.Cl-的存在加强了Pd/CeO2催化剂与氢的相互作用,Pd和CeO2通过对氢和氧物种的作用对甲醇分解反应的过程表现出协同效应.  相似文献   

19.
CeO2稳定Ru/γ-Al2O3湿空气氧化催化剂的研究   总被引:9,自引:0,他引:9  
用CeO2作添加剂,对以γ-Al2O3为载体、RuO2为活性组成分的Ru/Al2O3湿空气氧化催化剂掺杂改性,用分步浸渍的方法制备出Ru/CeO2/Al2O3三元复合氧化物催化剂。经XRD分析,证明CeO2进入了γ-Al2O3的晶格,并且有效抑制了高温时γ-Al2O3向α-Al2O3的相变及RuO2向γ-Al2O3晶格的渗入,在270℃、5.5MPa条件下,对苯酚的催化氧化降解结果表明,CeO2的加入可明显提高催化剂活性,其中Ru:CeO2:Al2O3(质量比)=0.6:6:100的催化剂性能最佳,反应30min,苯酚的去除率为96.0%。  相似文献   

20.
CeO2添加剂对等离子ZrO2涂层抗热震性的影响   总被引:2,自引:0,他引:2  
在ZrO2陶瓷涂层中加入适量的CeO2,使陶瓷涂层的抗热震性能得到提高,这主要是由于CeO2的加入,涂层的微小孔隙增加、涂层产生细微的网状裂纹,增加了微裂纹密度,从而降低了徐层的弹性模量,释放了涂层中的应力,提高了涂层的裂纹失稳扩展时的临界温差ΔTc,并可阻止裂纹沿单方向的快速扩展,使涂层的抗热震起裂性能和抗热震失效能力得到提高。其中,CeO2加入量为9%效果最佳,过量加入CeO2,会过早地促进裂纹的扩展、断裂,不利于提高涂层的抗热震性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号