首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
In this study, the initiation stage of spontaneous vapor explosions generated by single droplets of molten tin submerged in water was investigated using a high‐ speed video camera operated with a reflected light system. Photographs of the formation process of vapor film, the process of vapor film disturbance, and the initiation process of the vapor explosions for different masses of molten tin and different nozzle diameters were obtained. The results demonstrate that partial thermal interaction between tin and water does not cause a vapor explosion with fragmentation. The vapor film disappears locally during the formation of the vapor film around the hot liquid droplet. Direct contact between the hot molten tin surface and water is thereby generated. However, the local disappearance of the vapor film does not progress and the vapor film is reconstructed. A vapor explosion occurs when the vapor film collapses at the local area of the bottom or edge of the disk‐shaped droplet. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 41–55, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20185  相似文献   

2.
Linear stability analysis of a thin vapor film in subcooled film boiling on a horizontal cylinder is reported. The effects of liquid inertia, vapor viscosity and compressibility, and heat transfer were taken into account. Theoretical predictions of the heat transfer coefficient at the neutral stability point were compared with experimental data at the minimum-heat-flux point that was obtained during rapid quenching of thin horizontal wires in water and ethanol. At high liquid subcooling, the experimental value was 60% of the theoretical prediction irrespective of the wire diameter and quenching liquid. This difference was considered to be due to the nonuniformity of the vapor film which was neglected in the theoretical analysis. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 219–235, 1997  相似文献   

3.
The destabilization process of a vapor film formed around a hemispherical heated surface made of a copper or stainless‐steel rod 30 mm in diameter and immersed in R‐113 is investigated experimentally. The vapor film is destabilized by an external pressure wave, which is produced by a magnetic hammer, and photographs of the behavior are taken. The pressure change in the vapor film when the external pressure wave is supplied is measured by a small pressure transducer set at the stagnation point of the copper rod. The induced pressure change in the film is analyzed theoretically and is shown to be in good agreement with measured data. A sharp pressure pulse in the vapor film, which has a higher peak value than that of the supplied external wave, is confirmed. The maximum pressure in the vapor film is proportional to the 1.6 power of that of the external pressure wave. © 2001 Scripta Technica, Heat Trans Asian Res, 30(8): 689–701, 2001  相似文献   

4.
The flammable vapor cloud formed by liquid hydrogen spill can severely threaten the safety of life and property, which is one of the primary concerns during handling liquid hydrogen. Mixture model and Realizable k-ε model are adopted in ANSYS Fluent to predict the two-phase flow of liquid hydrogen spill. Dilution of the hydrogen vapor cloud formed by liquid hydrogen spill is analyzed, including the turbulent disturbance during cloud dispersion, and the cloud dilution characteristics especially its behavior under different wind speeds. The results show that the turbulent disturbance in the upper part of flammable vapor cloud can be 7.21 times of that in the background atmosphere, due to the mixing of the vapor cloud with the incoming wind and the upper air. The dilution time, needed for the vapor cloud to be diluted below the lower flammable limit since the end of the spill, increases firstly and then turns to decrease with the increasing wind speed. The atmospheric turbulence, the turbulent disturbance induced by the upward movement of vapor cloud, and the cloud frontal area all affect the dilution behavior.  相似文献   

5.
Crystallinity of thin film polycrystalline silicon (poly-Si) grown by atmospheric pressure chemical vapor deposition has been investigated by X-ray diffraction measurement and Raman spectroscopy. Poly-Si films deposited at high temperatures of 850–1050°C preferred to 2 2 0 direction. By Raman spectroscopy, the broad peak of around 480–500 cm−1 belonged to microcrystalline Si (μc-Si) phase was observed even for the poly-Si deposited at 950°C. After high-temperature annealing (1050°C) 3 3 1 direction of poly-Si increased. This result indicates that the μc-Si phase at grain boundary became poly-Si phase preferred to 3 3 1 direction by high-temperature annealing. Effective diffusion length of poly-Si films deposited at 1000°C was estimated to be 11.9–13.5 μm and 10.2–12.9 μm before and after annealing, respectively.  相似文献   

6.
The characteristics of boiling in a horizontal channel with changing conditions of the length of the heated wall and the channel height have been studied experimentally. Behavior of bubbles on the heated wall and growth of bubbles in the channel were observed by a high‐speed camera. As a result, the behavior of the growth of bubbles which was classified into three types according to channel height had an influence on the time variation of the degree of superheat, heat transfer, and burnout heat flux in the channel. When the liquid on the bottom wall became thin, nucleate boiling with a vapor dome was observed on the heated wall. © 2000 Scripta Technica, Heat Trans Asian Res, 29(6): 459–472, 2000  相似文献   

7.
In this work, the superheated vapor effect on liquid film condensation in a saturated porous medium using Forchheimer's model has been investigated analytically and numerically. The applied governing equations, the continuity equation, the Forchheimer equation, and the energy equation were transformed using the similarity transformation technique into a dimensionless form using a set of suitable variables and then solved numerically using the Runge–Kutta method. Results obtained were graphically drawn to illustrate the effects of superheated vapor and subcooled liquid on the liquid film condensation, temperature, and heat transfer rate through the porous medium. It was found that the film thickness is a function of dimensionless parameters related to the degree of subcooling and Grashof number without a superheating effect. Consequently, the Nusselt number depends on the square root of the Rayleigh number, the Grashof number, and the dimensionless film thickness. It was also found that if superheating exists, the liquid film thickness then depends on four dimensionless parameters related to the Grashof number, the degree of subcooling of the liquid, the extent of the superheating of the surrounding vapor, and a property ratio of the liquid and the vapor phase.  相似文献   

8.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   

9.
A ZnO-covered TiO2 (denoted as ZnO/TiO2) film was prepared by incorporating a small quantity of particulate ZnO in a TiO2 matrix by thermal chemical vapor deposition. When used in a dye-sensitized solar cell, an enhancement was observed in both short-circuit photocurrent (Jsc) and open-circuit voltage (Voc) by 12% and 17%, respectively, relative to those of a cell containing a bare TiO2 film. The observed Jsc enhancement is attributed to the increase in the surface area of the ZnO/TiO2 film, and the Voc enhancement to the formation of a potential barrier by ZnO at TiO2/electrolyte interface. The films were characterized by FE-SEM, EDX, and XRD.  相似文献   

10.
Cu(In,Ga)Se2 (CIGS) surface was modified with Zn doping using vacuum evaporation. Substrate temperatures and exposure times during the Zn evaporation were changed to control a distribution of Zn in the CIGS films. Diffusion of Zn in the CIGS films was observed at the substrate temperature of over 200°C. The diffusion depth of Zn increases with increasing the exposure time at the substrate temperature of 300°C. Solar cells were fabricated using the Zn doped CIGS films. A distribution of the efficiencies decreases with increasing the exposure time of Zn vapor. The doping of Zn at the film surface improved reproducibility of a high fill factor and efficiency. A solar cell fabricated using the CIGS film modified with Zn doping showed an efficiency of 14.8%.  相似文献   

11.
We report the effect of CdCl2 vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl2 exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl2 vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl2 powder source temperature were 400 °C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm2, were Voc = 663 mV, Jsc = 18.5 mA/cm2 and FF = 40%, respectively, corresponding to a total area conversion efficiency of η = 5%. In cells of minor area (0.1 cm2) efficiencies of 8% have been obtained.  相似文献   

12.
This paper investigates the micro-structural, chemical and crystalline properties of yttrium-stabilized zirconia (YSZ) thin films by using pulsed laser deposition (PLD), atomic layer deposition (ALD) and sputter. Atomic ratio of Y:Zr of YSZ thin films fabricated by three different deposition methods was adjustable. ALD YSZ with smaller grains has high density compared to PLD YSZ and sputter YSZ. On the other hand, the low crystallinity of ALD YSZ can be supplemented by annealing process. From these experimental results, ALD YSZ thin film has the characteristics that satisfy requirements for using an electrolyte of thin film solid oxide fuel cells.  相似文献   

13.
Phospho-olivine LiFePO4 cathode materials were prepared by hydrothermal reaction at 150 °C. Carbon black was added to enhance the electrical conductivity of LiFePO4. LiFePO4-C powders (0, 3, 5 and 10 wt.%) were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). LiFePO4-C/solid polymer electrolyte (SPE)/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1 mA cm−2 in a range between 2.5 and 4.3 V vs. Li/Li+, cyclic voltammetry (CV) and ac impedance spectroscopy. The results showed that initial discharge capacity of LiFePO4 was 104 mAh g−1. The discharge capacity of LiFePO4-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh g−1 at the first cycle and 127 mAh g−1 after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO4-C/SPE/Li cells was better than that of LiFePO4/SPE/Li cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号