首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
好氧颗粒污泥的性质及形成机理的探讨   总被引:2,自引:0,他引:2  
实验在SBR反应器中成功培养出好氧颗粒污泥,对其各项理化性质进行了描述,同时对其形成机理进行了初步的探讨. 研究结果表明:好氧颗粒污泥具有优良的沉降性能,其它各项理化性质也均优于普通活性污泥;其形成是各影响因素共同选择作用的结果.  相似文献   

2.
实验在SBR反应器中成功培养出好氧颗粒污泥,对其各项理化性质进行了描述,同时对其形成机理进行了初步的探讨.研究结果表明:好氧颗粒污泥具有优良的沉降性能,其它各项理化性质也均优于普通活性污泥;其形成是各影响因素共同选择作用的结果。  相似文献   

3.
为了探究闲置剩余污泥活性恢复过程中除磷性能的变化,采用厌氧-好氧交替运行的序批式间歇反应器(SBR)进行驯化,考察了比释(吸)磷量、比释(吸)磷速率、污泥浓度、吸释比(好氧吸磷量与厌氧释磷量的比值)等指标的变化。结果发现:在污泥龄控制为12.5 d的情况下,比释磷量与比吸磷量的恢复进程保持同步,其相关系数为0.927。除磷性能在活性污泥更新了16.7%时开始复苏,更新了45.8%后迅速提高,此时吸释比稳定在1.5~2,活性污泥更新58.3%时除磷性能基本完全恢复。厌氧段释磷期间pH的下降值可以间接指示吸磷表现,厌氧段pH在硝酸盐膝后的降低值与释磷量间的相关系数为0.675,而氧化还原电位(ORP)无论在厌氧还是好氧过程均无法指示除磷性能的变化。结构稳定的活性污泥是生物除磷性能恢复的前提,驯化过程中污泥浓度趋于稳定时除磷性能开始显著改善。  相似文献   

4.
纳米磁粉生物反应系统处理效能研究   总被引:5,自引:0,他引:5  
为了提高序批式活性污泥法(SBR Sequence Batch Reactor)工艺水处理效果和缩短处理后泥水分离时间,采用纳米磁粉生物法与磁分离技术结合的新型工艺处理淀粉废水.在SBR反应器中投加修饰过的纳米磁粉悬浮液(Fe3O4),对活性污泥进行磁化驯化,利用磁粉菌胶团降解废水中有机物,在外加磁场下快速分离处理后的磁性泥水混合液,并与SBR法进行了对比.实验结果表明:磁粉活性污泥增长快,驯化成熟时间短,污泥浓度、沉降性能、单位容积处理能力和抗冲击负荷能力明显提高.在各自最佳运行条件下,磁粉生物法在生物反应器中曝气时间节省2.0 h;沉淀时间缩短50 min;统计分析知对COD、NH4+-N和TN去除率分别提高10%、9.3%和8.4%.该新型污水处理工艺操作简单、运行管理方便、污水处理效果明显提高,具有广阔的市场应用前景.  相似文献   

5.
活性污泥长期好氧饥饿下的微生物种群结构演化   总被引:2,自引:0,他引:2  
为考察好氧饥饿环境对活性污泥硝化及除磷性能的影响,研究活性污泥在长期好氧饥饿条件下的微生物种群结构变化,以具有良好硝化和除磷性能的活性污泥为实验对象,利用Illumina高通量测序平台分别考察活性污泥好氧饥饿处理3,7,14和30 d后的微生物种群结构特性及差异.结果表明:好氧饥饿时间越长,活性污泥硝化及除磷性能所受的影响越大,污泥的种群结构变化越明显.硝化菌和除磷菌等相关功能细菌在短期(7 d)好氧饥饿过程中,可分别利用细菌衰亡裂解释放的氨氮和胞内储能物质进行细胞维持,确保系统硝化及除磷性能的恢复,同时恢复期氨氧化菌快于亚硝酸氧化菌的活性恢复速率促进了系统由全程硝化向短程硝化的转变;而随着好氧饥饿时间的延长,功能细菌的种群丰度均逐渐减少.此外,活性污泥微生物种群结构在30 d好氧饥饿过程中经历了一个动态变化过程,既有优势种群(如Proteobacteria和Bacteroidetes等)的逐步消亡,又有适应好氧饥饿环境的菌种(如Firmicutes)增强成为新的优势菌群.  相似文献   

6.
为了研究电气石对厌氧氨氧化菌驯化过程的影响,采用2个平行的连续搅拌式生物反应器,其中一个添加电气石(记为R1),另一个未添加电气石作为空白对照(记为R2).2个反应器均在第23天观察到显著的NH_4~+-N和NO_2~--N同时去除,即表现出厌氧氨氧化活性.添加电气石反应器R2的污泥适应期比对照反应器R1缩短42 d(R2为12 d,R1为54 d),且最高氮负荷达到205.0mg/(L·d),比对照表现出更好的耐负荷冲击能力.此外,电气石可以调控pH和氧化还原电位使其保持在厌氧氨氧化菌适合范围内,为驯化提供稳定环境.厌氧氨氧化活性批式实验显示,添加电气石驯化得到的菌体的SAA最高比对照增加48.8%,微生物胞外聚合物(extracellular polymeric substances,EPS)检测结果显示,添加电气石反应器R2的多糖、蛋白质和总EPS分别比对照反应器R1增加7.6%、86.7%和43.8%,说明电气石可以促进微生物生长代谢,提高厌氧氨氧化反应活性.粒径与扫描电子显微镜检测说明:电气石并不利于污泥颗粒化,而是大部分污泥与电气石分散生长.谱系分析说明:驯化过程中,微生物组成由接种活性污泥中大量杆菌与丝状菌逐渐演变,筛选出如反硝化菌、亚硝化菌等功能菌种.  相似文献   

7.
为研究污泥好氧消化同时加入Fenton试剂对污泥的处理效果,利用3个反应器作对比实验,考察了3个反应器中污泥的SS、VSS去除率,污泥上清液中COD、总磷、氨氮浓度及污泥比阻、OUR和pH的变化情况。实验结果表明,每天每升污泥中分别加入Fenton试剂2.0和3.0 g,好氧消化15 d,污泥的SS和VSS去除率得到提高,分别从对照实验的32.2%和38.1%提高到37.4%、43.2%和40.2%、47.7%。Fenton试剂投加量的增大有利于污泥的SS和VSS的去除,同时上清液中的COD、总磷、氨氮质量浓度都有所增加,而加入Fenton试剂后污泥的pH显著下降。Fenton试剂氧化能显著提高污泥的脱水性能。与对照实验相比,脱水性能分别提高了72.9%和86%。  相似文献   

8.
为了使剩余污泥能够回收利用以及减少处理成本,利用管式膜流道宽、高强度支撑层和高精度分离层以及耐较高强剪切力等特点,研究了在不添加任何营养物质的情况下定期向管式膜生物反应器(MBR)生化池中投入污泥的方法,以实现污泥减量化,并对MBR反应池中污泥浓度进行监测.实验结果显示:在长时间实验条件下,活性污泥的消解速率可以达到596 g/(m3·d),出水COD维持在40 mg/L以下,氨氮在5 mg/L以下,表明管式MBR系统有较好的污泥减量效果,可以有效消解活性污泥,并且出水水质都稳定达到国家排放标准.  相似文献   

9.
对改进的间歇循环式活性污泥法(CASS)实验装置在不同实验条件下的污泥沉降性能进行了研究,同时也探讨了泥龄、污泥负荷及原水水质对污泥沉降性能的影响。实验结果表明:改进后的CASS装置,由于生物选择器筛选的絮凝性细菌,使反应器的污泥保持了良好性能。  相似文献   

10.
在SBR反应器中,以普通絮状活性污泥作为接种污泥,采用模拟豆浆废水培养好氧颗粒污泥,研究投加活性炭粉末的粒径大小及曝气量、沉降时间对好氧颗粒污泥形成的影响.实验结果表明,好氧颗粒污泥最佳培养条件为上升速度1.4cm/s、沉降时间2min、活性炭粉末粒径140目,14d污泥颗粒化.培养成熟的好氧颗粒污泥表面与内部可见活性炭;颗粒污泥表面由较多交织缠绕的丝状菌和大量的菌体而组成,内部呈孔隙、层状结构,发现有兼性厌氧球菌;具有较好的机械强度,沉降速度为普通活性污泥的5倍以上.污泥全部颗粒化后,COD负荷达2.6~3.2g/L·d,COD去除率达到70%~94%.  相似文献   

11.
对改进的间歇循环式活性污泥法(CASS)实验装置在不同实验条件下的污泥沉降性能进行了研究,同时也探讨了泥龄,污泥负荷及原水水质对污泥沉降性能的影响。实验结果表明:改进后的CASS装置,由于生物选择器筛选的絮凝性细菌,使反应器的污泥保持了良好性能。  相似文献   

12.
为研究污泥好氧消化同时加入Fenton试剂对污泥的处理效果,利用3个反应器作对比实验,考察了3个反应器中污泥的SS、VSS去除率,污泥上清液中COD、总磷、氨氮浓度及污泥比阻、OUR和pH的变化情况.实验结果表明,每天每升污泥中分别加入Fenton试剂2.0和3.0g,好氧消化15 d,污泥的SS和VSS去除率得到提高...  相似文献   

13.
目的研究低pH值、低有机负荷引起的丝状菌活性污泥膨胀对MBR工艺运行效果的影响,控制污泥膨胀,为实际工程应用提供实验依据.方法试验以增加反应器内的碱度和污泥负荷来提供适应菌胶团生长的微生物环境为主,同时投加次氯酸钠杀菌剂和硫酸亚铁絮凝剂来辅助控制污泥膨胀.结果污泥膨胀期间,上清液CODcr平均去除率比未发生污泥膨胀时提高了6.31%;为保持恒定出水量,膜两侧压差在7 d内由10 kPa迅速增加到65 kPa.控制反应器内pH值7.2~8.0,BOD污泥负荷在0.292~0.323,调整十余天后,成功控制住了污泥膨胀.结论丝状菌比表面积大,在低底物浓度的条件下对基质的亲和能力比菌胶团强,污泥膨胀使膜污染急剧增加.创造有利于菌胶团生长的微生物环境可有效地恢复由丝状菌引起污泥膨胀.  相似文献   

14.
两相厌氧工艺好氧预挂膜快速启动试验研究   总被引:3,自引:1,他引:2  
为克服两相厌氧反应器启动时间长的缺点,采用填料好氧预挂膜(10 h)的方法来加快两相厌氧反应器的启动速度,小试试验结果表明:以高浓度难降解中药废水为底物、好氧污泥为种泥,13 d就完成快速启动.这个启动速度比接种普通污泥快4~6倍(8~12周),与接种成熟厌氧颗粒污泥持平(一般2~3周,个别的一周之内快速启动).启动后产酸相(CSTR)出水VFA含量逐步提高,pH在4.35~4.71;产甲烷相(UAS-BAF)出水VFA在启动10 d后下降至500 mg/L以下,pH在7.21~7.85;UASBAF出水比填料区前出水的各项挥发酸指标都低,这证明填料的好氧预挂膜效果良好,从而加快了反应器的启动速度.研究还提出了“好氧活性污泥培养———污泥沉淀浓缩———喷淋预挂膜”的填料好氧预挂膜技术方案,该方法有助于两相厌氧工艺在中国废水处理领域的实际应用.  相似文献   

15.
为了研究低溶解氧微膨胀前后污泥硝化活性的变化,采用SBR反应器,平均DO浓度为0.6mg/L-0.9mg/L,测定污泥微膨胀前后污泥氧消耗速率曲线。结果表明:发生污泥微膨胀后,活性污泥对COD的去除能力有较大的提高,而对氨氮去除能力却有一定的下降。污泥微膨胀前后的氧消耗速率曲线显示,微膨胀前活性污泥总活性为67.72mgO2/gVSS·h,其中硝化活性为43.12mgO2/gVSS·h,占其总活性的63.67%;而微膨胀后活性污泥总活性为90.49mgO2/gVSS·h,其中硝化活性为23.98mgO2/gVSS·h,占其总活性的26.51%。低DO成为微生物生长的限制性基质,污泥微膨胀的状态下,活性污泥中丝状菌成为优势菌种,而硝化细菌成为非优势菌种,污泥的总硝化活性降低。  相似文献   

16.
在SBR反应器中以葡萄糖为唯一碳源,以普通絮状活性污泥为接种污泥培养好氧颗粒污泥,36d后形成好氧颗粒污泥,粒径2~5mm,对COD去除率保持在90%.对形成的好氧颗粒污泥进行基质降解和污泥生长动力学研究,得到好氧颗粒污泥基质降解动力学参数Ks/485.0(mg·L^-1),Vmax/1.2h^-1,生长动力学参数Y/0.156kgMLVSS/COD,Kd/0.30d^-1.  相似文献   

17.
在SBR中利用优势混合菌,活性污泥和大豆深加工废水,经过19 d的驯化,培养出好氧颗粒污泥.从第19天到第34天,对好氧颗粒污泥与普通活性污泥的性质进行比较发现,好氧颗粒污泥在污泥颗粒强度、污泥比重(1.084~1.087 g.cm-3)、含水率(97.30%~97.78%)、沉降指数(60~96 mL.g-1)、VSS/TSS(85.45%~87.69%)等性能指标上均优于普通活性污泥.  相似文献   

18.
目的 研究在好氧颗粒污泥形成过程中pH值对微生物种群的影响及两种颗粒污泥的特性.方法 采用实验室动态小试的方法,以葡萄糖为碳源,在两个SBR反应器(R1、R2)中通过调节pH值,使R1有机负荷率7(kg · m-3 · d-1)、pH=3.0~6.0;R2有机负荷率7(kg · m-3 · d-1)、pH=7.0~8.5.结果 R1在5 d后形成好氧颗粒污泥,R2在25 d后形成好氧颗粒污泥.pH值在好氧颗粒污泥形成过程中起菌种选择作用,不同pH值条件下均可形成好氧颗粒污泥.结论 丝状菌好氧颗粒污泥结构松散但易于形成;非丝状菌类好氧颗粒污泥结构紧密、稳定性好但形成时间长;非丝状菌类好氧颗粒污泥的污泥质量浓度最高达10.162 g · L-1,明显高于丝状菌好氧颗粒污泥5.85 g · L-1,两种好氧颗粒污泥均具有良好的有机物降解能力,平均COD去除率高达95%.  相似文献   

19.
采用超声预处理方法破解剩余污泥,考查污泥理化性质的变化以及后续厌氧消化的性能。在3种不同超声波电功率密度下破解污泥,并对超声波电功率密度1.5 W/mL、超声30 min处理后的污泥进行厌氧消化实验,结果表明:污泥溶解性COD随着超声时间和超声波电功率密度的增加而线性上升.当超声波电功率密度分别为0.8和1.5 W/mL、作用30 min后,污泥溶解性COD是原泥的4.7倍和6.0倍.超声后污泥的pH值和碱度均有下降,同时污泥溶液的颗粒尺寸减小.超声污泥经厌氧消化后总COD去除率较对照组上升了13.5%.在5%污泥投配率下,超声组反应器在10 d内即达到稳定产气状态,超声污泥的平均日产气量提高了57.9%.  相似文献   

20.
活性污泥法动力学模型解析(2)- PF型反应器   总被引:2,自引:0,他引:2  
导出与分析了不同混合条件下,各类活性污泥生物反应器的动力学模型,以此为基础,模拟了不同活性污泥法的动力学方程,并讨论了计算结果。研究结果表明,在相同的条件下,推流型反应器(PFR:Plug flow reactor)性能优于完全混合型反应器(CSTR:continuous stirred tank reactor),但这一差别随反应时间的增加而减少,4阶以上的CSTR性能与PFR相接近,分析表明,在做CSTR的设计计算时,不能同时设定污泥龄或出水基质浓度。同时,污泥龄不宜直接用于计算PFR。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号