首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reference materials (RMs) with well-characterised composition are necessary for reliable quantification and quality control of isotopic analyses of geological samples. For in situ Rb-Sr analysis of silicate minerals via laser ablation inductively coupled plasma tandem mass spectrometry (LA-ICP-MS/MS) with a collision/reaction cell, there is a general lack of mineral-specific and matrix-matched RMs, which limits wider application of this new laser-based dating technique to certain minerals. In this work, pressed nano-powder pellets (NP) of four RMs, GL-O (glauconite), Mica-Mg (phlogopite), Mica-Fe (biotite) and FK-N (K-feldspar), were analysed and tested for in situ Rb-Sr dating, complemented by isotope dilution (ID) MC-ICP-MS Rb-Sr analyses of GL-O and Mica-Mg. In addition, we attempted to develop alternative flux-free and fused ‘mineral glasses’ from the above RMs for in situ Rb-Sr dating applications. Overall, the results of this study showed that among the above RMs only two NP (Mica-Mg-NP and GL-O-NP) were suitable and robust for in situ dating applications. These two nano-powder reference materials, Mica-Mg-NP and GL-O-NP, were thus used as primary RMs to normalise and determine Rb-Sr ages for three natural minerals: MDC phlogopite and GL-O glauconite grains, and also Mica-Fe-NP (biotite). Our in situ analyses of the above RMs yielded Rb-Sr ages that are in good agreement (within 8%) of published ages, which suggests that both Mica-Mg-NP and GL-O-NP are suitable RMs for in situ Rb-Sr dating of phlogopite, glauconite and biotite. However, using secondary RMs is recommended to monitor the quality of the obtained ages.  相似文献   

2.
There is currently a lack of well‐characterised matrix‐matched reference materials (RMs) for forensic analysis of U‐rich materials at high spatial resolution. This study reports a detailed characterisation of uraninite (nominally UO2+x) from the Happy Jack Mine (UT, USA). The Happy Jack uraninite can be used as a RM for the determination of rare earth element (REE) mass fractions in nuclear materials, which provide critical information for source attribution purposes. This investigation includes powder X‐ray diffraction (pXRD) data, as well as major, minor and trace element abundances determined using a variety of micro‐analytical techniques. The chemical signature of the uraninite was investigated at the macro (cm)‐scale with micro‐X‐ray fluorescence (µXRF) mapping and at high spatial resolution (tens of micrometre scale) using electron probe microanalysis (EPMA) and laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analyses. Based on EPMA results, the uraninite is characterised by homogeneous UO2 and CaO contents of 91.57 ± 1.49% m/m (2s uncertainty) and 2.70 ± 0.38% m/m (2s), respectively. Therefore, CaO abundances were used as the internal standard when conducting LA‐ICP‐MS analyses. Overall, the major element and REE compositions are homogeneous at both the centimetre and micrometre scales, allowing this material to be used as a RM for high spatial resolution analysis of U‐rich samples.  相似文献   

3.
Silicon is a beneficial element for many plants and is deposited in plant tissue as amorphous bio‐opal called phytoliths. The biochemical processes of silicon uptake and precipitation induce isotope fractionation: the mass‐dependent shift in the relative abundances of the stable isotopes of silicon. At the bulk scale, δ30Si ratios span from ?2 to +6‰. To further constrain these variations in situ, at the scale of individual phytolith fragments, we used femtosecond laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (fsLA‐MC‐ICP‐MS). A variety of phytoliths from grasses, trees and ferns were prepared from plant tissue or extracted from soil. Good agreement between phytolith δ30Si ratios obtained by bulk solution MC‐ICP‐MS analysis and in situ isotope ratios from fsLA‐MC‐ICP‐MS validates the method. Bulk solution analyses result in at least twofold better precision for δ30Si (2s on reference materials ≤ 0.11‰) over that found for the means of in situ analyses (2s typically ≤ 0.24‰). We find that bushgrass, common reed and horsetail show large internal variations up to 2‰ in δ30Si, reflecting the various pathways of silicon from soil to deposition. Femtosecond laser ablation provides a means to identify the underlying processes involved in the formation of phytoliths using silicon isotope ratios.  相似文献   

4.
Trace element concentrations in gold grains from various geological units in South Africa were measured in situ by field emission‐electron probe microanalysis (FE‐EPMA), laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and synchrotron micro X‐ray fluorescence spectroscopy (SR‐μ‐XRF). This study assesses the accuracy, precision and detection limits of these mostly non‐destructive analytical methods using certified reference materials and discusses their application in natural sample measurement. FE‐EPMA point analyses yielded reproducible and discernible concentrations for Au and trace concentrations of S, Cu, Ti, Hg, Fe and Ni, with detection limits well below the actual concentrations in the gold. LA‐ICP‐MS analyses required larger gold particles (> 60 μm) to avoid contamination during measurement. Elements that measured above detection limits included Ag, Cu, Ti, Fe, Pt, Pd, Mn, Cr, Ni, Sn, Hg, Pb, As and Te, which can be used for geochemical characterisation and gold fingerprinting. Although LA‐ICP‐MS measurements had lower detection limits, precision was lower than FE‐EPMA and SR‐μ‐XRF. The higher variability in absolute values measured by LA‐ICP‐MS, possibly due to micro‐inclusions, had to be critically assessed. Non‐destructive point analyses of gold alloys by SR‐μ‐XRF revealed Ag, Fe, Cu, Ni, Pb, Ti, Sb, U, Cr, Co, As, Y and Zr in the various gold samples. Detection limits were mostly lower than those for elements measured by FE‐EPMA, but higher than those for elements measured by LA‐ICP‐MS.  相似文献   

5.
Four natural chromite samples (LBS13-04, LBS13-06 and LBS13-13) from the Luobusa ophiolite (China) and 16SW2-6 from the Stillwater Complex (USA) were developed as reference materials for in situ element microanalysis. Approximately 8 g of chromite fragments with grain sizes of 0.5–1.5 mm from each chromite sample were separated under a binocular microscope and analysed by EPMA, XRF, LA-ICP-MS and solution nebulisation ICP-MS techniques for major and trace elements at six laboratories. The results show that the four chromite samples are homogeneous with respect to MgO, Al2O3, Cr2O3, FeO, Sc, Ti, V, Mn, Co, Ni, Zn and Ga. These samples are thus suitable to be used as reference materials for in situ microanalysis.  相似文献   

6.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

7.
AUSTRALIS (AMS for Ultra Sensitive TRAce eLement and Isotopic Studies) is a microbeam accelerator mass spectrometry (AMS) system designed for in situ microanalysis of geological samples for trace elements and radiogenic and stable isotope data. The AMS method eliminates molecular and isobaric interferences in in situ mass spectrometric measurements, opening up new opportunities in geochronology and tracer applications. Tests have been carried out for measurements of Pb, S and Os isotopes, conducted mainly at 1.5 MV accelerating voltage. In Pb and S tests, precision as high as 0.3‰ has been obtained, made possible by a fast isotope switching system to counter the effect of instabilities in the ion source and beam transport system. In trace‐element analysis, a detection limit for Au at the sub‐ppb level was obtained.  相似文献   

8.
A new olivine reference material – MongOL Sh11‐2 – for in situ analysis has been prepared from the central portion of a large (20 × 20 × 10 cm) mantle peridotite xenolith from a ~ 0.5 My old basaltic breccia at Shavaryn‐Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5–2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA‐ICP‐MS, SIMS and bulk analytical methods (ID‐ICP‐MS for Mg and Fe, XRF, ICP‐MS) for major, minor and trace elements at six institutions world‐wide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si), minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1–2). The presence of some mineral and fluid‐melt micro‐inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty‐seven major, minor and trace elements.  相似文献   

9.
As technical advances have dramatically increased our ability to analyze trace elements, the need for more reliable data on the compositional dependence of trace element partitioning between minerals and melt has become increasingly important. The late-Cretaceous Carmacks Group of south central Yukon comprises a succession of primitive high-Mg ankaramitic lavas characterized by shoshonitic chemical affinities and containing large complexly zoned clinopyroxene phenocrysts. The compositional zonation of the clinopyroxene phenocrysts is characterized by relatively Fe-rich (Mg# = Mg/(Mg + Fe) = 0.85), but mottled, cores surrounded by mantles of cyclically-zoned clinopyroxene whose Mg# varies repeatedly between 0.9 and 0.80. These cyclically zoned clinopyroxene mantles appear to record the repeated influx and mixing of batches of primitive with more evolved magma in a deep sub-crustal (∼1.2 GPa) magma chamber(s). Laser ablation ICP-MS was used to analyze the trace element variation in these zoned clinopyroxenes. The results indicate more than a threefold variation in the absolute concentrations of Th, Zr, rare earth elements (REE), and Y within individual clinopyroxene phenocrysts, with no apparent change in the degree of REE or high field strength element (HFSE) fractionation. The variation in absolute abundances of trace elements correlates closely with the major element composition of the clinopyroxene, with the most enriched clinopyroxene having the lowest Mg# and highest Al contents. The problem is that the amount of crystal fractionation required to explain the major element variation (∼20%) in these clinopyroxene phenocrysts cannot explain the increase in the abundance of the incompatible trace elements, which would require more than 70% crystal fractionation, if constant partition coefficients are assumed. The anomalous increase in incompatible trace elements appears to reflect an increase in their partition coefficients with increasing AlIV in the clinopyroxene; with an increase in Al2O3 from 1.5 to 4.0 wt.% during ∼20% crystal fractionation over a temperature decrease of ∼100°C being associated with more that a threefold increase in the partition coefficients of Th, Zr, REE, and Y. The magnitude of these increases may indicate that the substitution of these trace elements into clinopyroxene is better modeled in some natural systems by a local charge balance model, rather than the distributed charge model that better replicates the results of annealed experiments. These findings indicate that the effect of Al on the partition coefficients of incompatible trace elements in clinopyroxene may be under appreciated in natural magmatic systems and that the application of experimentally determined clinopyroxene partition coefficients to natural systems must be done with caution.  相似文献   

10.
Zircon megacrysts from the Mud Tank carbonatite, Australia, are being used in many laboratories as a reference material for LA‐ICP‐MS U‐Pb dating and trace element measurement, and LA‐MC‐ICP‐MS determination of Hf isotopes. We summarise a database of > 10000 analyses of Mud Tank zircon (MTZ), collected from 2000 to 2018 during its use as a secondary reference material for simultaneous U‐Pb and trace element analysis, and for Hf‐isotope analysis. Trace element mass fractions are highest in dark red‐brown stones and lowest in colourless and gem‐quality ones. Individual unzoned grains can be chemically homogeneous, while significant variations in trace element mass fraction are associated with oscillatory zoning. Chondrite‐normalised trace element patterns are essentially parallel over large mass fraction ranges. A Concordia age of 731.0 ± 0.2 Ma (2s,= 2272) is taken as the age of crystallisation. Some grains show lower concordant to mildly discordant ages, probably reflecting minor Pb loss associated with cooling and the Alice Springs Orogeny (450–300 Ma). Our weighted mean 176Hf/177Hf is 0.282523 ± 10 (2s, n = 9350); the uncertainties on this ratio reflect some heterogeneity, mainly between grains. A few analyses suggest that colourless grains have generally lower 176Hf/177Hf. MTZ is a useful secondary reference material for U‐Pb and Hf‐isotope analysis, but individual grains need to be carefully selected using CL imaging and tested for homogeneity, and ideally should be standardised by solution analysis.  相似文献   

11.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

12.
Seven ilmenite (FeTiO3) megacrysts derived from alnöite pipes (Island of Malaita, Solomon Islands) were characterised for their major and trace element compositions in relation to their potential use as secondary reference materials for in situ microanalysis. Abundances of thirteen trace elements obtained by laser ablation ICP‐MS analyses (using the NIST SRM 610 glass reference material) were compared with those determined by solution‐mode ICP‐MS measurements, and these indicated good agreement for most elements. The accuracy of the LA‐ICP‐MS protocol employed here was also assessed by repeated analysis of MPI‐DING international glass reference materials ML3B‐G and KL2‐G. Several of the Malaitan ilmenite megacrysts exhibited discrepancies between laser ablation and solution‐mode ICP‐MS analyses, primarily attributed to the presence of a titano‐magnetite exsolution phase (at the grain boundaries), which were incorporated solely in the solution‐mode runs. Element abundances obtained by LA‐ICP‐MS for three of the ilmenite megacrysts (CRN63E, CRN63H and CRN63K) investigated here had RSD (2s) values of < 20% and therefore can be considered as working values for reference purposes during routine LA‐ICP‐MS analyses of ilmenite.  相似文献   

13.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.  相似文献   

15.
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta.  相似文献   

16.
The chronology of the Solar System, particularly the timing of formation of extra‐terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb‐Sr, K‐Ar), and even applied (K‐Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra‐terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra‐terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.  相似文献   

17.
The isotopic composition of lithium (Li) in clinopyroxene (Cpx), determined via in situ micro-analysis, has been employed as a potential geochemical tool for studying various geological processes such as crust-mantle recycling, silicate weathering and fluid-rock interaction. To obtain precise and accurate Li isotopic compositions in Cpx by LA-MC-ICP-MS, synthetic Cpx matrix-matched reference materials (RMs) were prepared in this study. Six Cpx-matrix RMs were prepared by mixing metallic oxides with GSP-2 (granodiorite) or pure L-SVEC solution and melting them into glasses (GSP-2 + oxide; L-SVEC + oxide). Two representative synthetic glasses, CPXA01 and CPXB01, were subjected to a series of analyses to investigate the possible qualification of the RMs for in situ Li isotope measurement by LA-MC-ICP-MS, including elemental homogeneity analysis (elemental mapping analysis and spot analysis), Li isotopic homogeneity analysis and accurate Li isotopic determination. The applicability of the synthetic Cpx-matrix RMs was highlighted by comparing the δ7Li values of three natural Cpx calibrated against the synthetic Cpx-matrix RMs and other commonly used RMs with different matrices (NIST SRM 612, BCR-2G, GOR128-G, StHs6/80-G, KL2-G and T1-G), respectively. Additionally, CPXB01-05 RMs with the same matrix but different Li contents were prepared to explore the Li content mismatch effect, which is significant for accurate determination of in situ Li isotopic composition by LA-MC-ICP-MS. The results of the cross-calibration of Li isotopes in CPXA01 and CPXB01 suggested no obvious Li isotopic fractionation between the two types of glasses (GSP-2 + oxide; L-SVEC + oxide). Thus, the two methods of producing Cpx-matrix RMs are suitable for preparing the matrix-matched RMs for in situ microanalysis for Li isotopes.  相似文献   

18.
Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.  相似文献   

19.
Here, we investigate the scale and nature of melting and melt percolation processes recorded by 17 supra-subduction peridotites collected in a ~70 km2 area in the northern portion of the Josephine ophiolite (Western USA). We present major and trace element variations in whole rocks; major elements in olivine, orthopyroxene, clinopyroxene and spinel; and trace elements [including rare earth element (REE)] in clinopyroxene and orthopyroxene. In the Josephine peridotites, compositional variability occurs at different scales. On the one hand, large systematic changes from depleted to fertile peridotites occur on large kilometer scales. Field, petrological and geochemical data can be consistently explained if the Josephine mantle experienced variable degrees of hydrous flux melting (10 to >20–23 %), and we argue that small fractions of subduction-derived fluids (0.015–0.1 wt%) were pervasive in the ~70 km2 studied area, and continuously supplied during wedge melting. Fluid localization probably led to increased extent of flux melting in the harzburgitic areas. On the other hand, in single outcrops, sharp transitions from dunite to harzburgite to lherzolite and olivine websterite can be found on meter to centimeter scales. Thus, some fertile samples may reflect limited degrees of refertilization at the outcrop scale. In addition, clinopyroxene and orthopyroxene in ultra-depleted harzburgites (Spinel Cr# > 58) show variable degrees of LREE enrichment, which reflect percolation of and partial re-equilibration with, small fractions of boninite melt. Because the enriched samples also show the highest spinel Cr#, we argue that these enrichments are local features connected to the presence of dunite channels nearby. Lastly, trace element concentrations of pyroxenes in Josephine harzburgites show that they are one of the most depleted harzburgites among worldwide ophiolitic peridotites, indicating particularly high degrees of melting, potentially past the exhaustion of clinopyroxene.  相似文献   

20.
Clinopyroxene is a major host for lithophile elements in the mantle lithosphere, and therefore it is critical whether we are to understand the constraints that this mineral puts on mantle evolution and melt generation. This study presents a detailed in situ trace element and Sr isotope study of clinopyroxene, amphibole and melt from two spinel lherzolites from the Middle Atlas Mountains, Morocco. The results show that there is limited, but discernable, Sr isotopic variation between clinopyroxene crystals within these xenoliths [87Sr/86Sr ranging from 0.703416 (±11 2SE) to 0.703681 (±12 2SE)]. Trace element patterns show similar interelement fractionation with LREE enrichment, but there is a considerable range in terms of elemental concentration (e.g. over 100 ppm in Sr concentrations). Observed modal clinopyroxene is far more abundant than that predicted from estimates of melt depletion. This along with isotope and trace element variability found in these xenoliths supports a multistage metasomatic process in which clinopyroxene and amphibole are recent secondary additions to the lithospheric mantle. Elemental systematics indicate that the metasomatic mineral assemblage has most recently equilibrated with a carbonatitic melt prior to inclusion in the host basalt. The clinopyroxene from this study is typical of global off-craton clinopyroxene in terms of Sr isotope composition, suggesting that the majority of clinopyroxene in off-craton settings may have a recent metasomatic origin. These findings indicate that caution is required when using peridotite xenoliths to estimate the degree of elemental enrichment in the subcontinental lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号