首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

2.
Large area, well-aligned carbon nanotubes (CNTs) were synthesized on porous silicon by electron cyclotron resonance chemical vapor deposition (ECR-CVD). No bias was applied on the substrate in this experiment. CH4 and H2 were used as source gases and Fe3O4 nanoparticles as the catalyst. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), and Raman spectrum were used to evaluate the structure and composition. The results show that these CNTs have varying outer diameters from 10 to 90 nm and uniform length over 10 μm. They display hollow tubular and chain structures. The possible formation mechanism of aligned CNTs is discussed.  相似文献   

3.
Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.  相似文献   

4.
Carbon nanotubes were synthesized by chemical vapor deposition (CVD) using ethanol vapor as carbon source. Catalysts were Co and Mo metallic particles obtained from the corresponding acetates dissolved in ethanol. Acetate solutions are deposited on porous alumina substrates by dip coating. A dense array of aligned carbon nanotubes perpendicular to the substrate surface grow with 20 min exposure to ethanol vapor flow for substrate temperatures between 650 and 830 °C. Sample analysis is performed with scanning electron microscopy and Raman spectroscopy.  相似文献   

5.
We present atomic-scale, video-rate environmental transmission electron microscopy and in situ time-resolved X-ray photoelectron spectroscopy of surface-bound catalytic chemical vapor deposition of single-walled carbon nanotubes and nanofibers. We observe that transition metal catalyst nanoparticles on SiOx support show crystalline lattice fringe contrast and high deformability before and during nanotube formation. A single-walled carbon nanotube nucleates by lift-off of a carbon cap. Cap stabilization and nanotube growth involve the dynamic reshaping of the catalyst nanocrystal itself. For a carbon nanofiber, the graphene layer stacking is determined by the successive elongation and contraction of the catalyst nanoparticle at its tip.  相似文献   

6.
《Materials Letters》2007,61(23-24):4549-4552
Carbon nanotubes were deposited on non-conductive optically transparent sapphire substrates of various crystallographic orientations and on amorphous quartz glass. The substrates were covered by catalysts in which trivalent iron, Fe(III), was the dominant component. The nanotubes were synthesized by catalytic hot filament chemical vapor deposition. During their production, they form bundles composed of multiwalled carbon nanotubes and have a length of up to several tens of micrometers, thickness between 1 and 4 μm, and a non-circular cross-section. The growth of these bundles on a non-porous non-conducting optically transparent substrate was confirmed by scanning electron microscopy and by Raman spectroscopy.  相似文献   

7.
Multi-wall carbon nanotubes are grown in a chemical vapor deposition process by using bulk gold and copper substrates as catalysts. Nanotube growth starts from a nanometer-sized roughness on the metal surfaces and occurs in a mechanism where the catalyst particle is either at the tip (Au) or root (Cu) of the growing nanotube. Whereas Au leads to nanotubes with good structural perfection, nanotubes grown from Cu show a higher density of defects. High-resolution transmission electron microscopy shows the bonding between Au and carbon at the metal-nanotube interface whereas no bonds between Cu and carbon occur. Highly mobile Au or Cu atoms adsorb at the growing edge of a carbon nanotube from where diffusion along the nanotube wall can lead to the formation of Au or Cu nanowires inside the central hollow of carbon nanotubes.  相似文献   

8.
Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.  相似文献   

9.
负衬底偏压对碳纳米管生长的影响   总被引:1,自引:1,他引:0  
利用负衬底偏压增强热灯丝化学气相沉系统制备了碳纳米管,用扫描电子显微镜研究了碳纳米管的生长,结果表明碳纳米管的生长随着负衬底偏压的增大先增强,然后减弱,并且出现了部分准直的碳纳米管,分析和讨论了负衬底偏压对碳纳米管生长的影响。  相似文献   

10.
Hybrid hollow multi-walled carbon nanotubes (MWCNTs)/polyelectrolytes (PE) nanofibers were prepared by a combination of the electrospinning method and layer-by-layer (LbL) technique. The mixed polystyrene (PS)/MWCNTs nanofibers were obtained by electrospinning method, which were employed as templates to self-assembly multilayered polyelectrolytes by LbL technique. Hollow MWCNTs/PE nanofibers were obtained by selectively removed part of the template: PS, which is confirmed by Raman spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  相似文献   

11.
A novel method was investigated to synthesize carbon fiber florets using copper tartrate catalyst precursors by catalytic chemical vapor deposition at 300 °C. Samples were obtained for different growth periods. On the basis of electron microscopy and X-ray diffraction characterizations, a growth model for the formation of fiber florets was proposed as well as the branching of fibers nearby copper catalyst particles. These findings could facilitate the understanding of the catalytic growth process of different carbon materials including carbon nanotubes and graphene under different reaction parameters.  相似文献   

12.
Ho YM  Yang GM  Zheng WT  Wang X  Tian HW  Xu Q  Li HB  Liu JW  Qi JL  Jiang Q 《Nanotechnology》2008,19(6):065710
Hybrid ZnO-carbon nanotubes as well as nanodiamond-carbon nanotubes were synthesized via a straightforward process of plasma enhanced chemical vapor deposition. For the former, ZnO nanoparticles were instantly coated on the tube surface in the final growing process of carbon nanotubes, while for the latter diamond nanoparticles were grown using pretreatment of a silicon substrate with Ni(NO(3))(2)·6H(2)O/Mg(NO(3))(2)·6H(2)O alcohol solution prior to deposition and a high H(2)/CH(4) gas flow ratio in the deposition process. The morphology and microstructure of the obtained hybrid materials were characterized by transmission electron microscopy. Both hybrid ZnO-carbon nanotubes and nanodiamond-carbon nanotubes exhibited excellent field emission properties.  相似文献   

13.
Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.  相似文献   

14.
乙醇催化燃烧法可以方便的制备出碳纳米管和碳纳米纤维。介绍采用该方法制备出一种独特的竹节形的碳纳米管,利用乙醇作为碳源和燃料,提供材料生长所需的能量;利用Cu薄片作为基底;利用FeCl3或Fe(NO3)3作为催化剂先体。通过扫描电子显微镜(SEM),透射电子显微镜(TEM),对黑色絮状的沉积产物进行表征。实验结果表明,产物中的碳纳米管具有较好的竹节形结构。实验也表明制备的竹节形碳纳米管的形貌和微结构与其独特的制备条件有关,如:火焰的抖动,催化剂先体溶液的浓度,制备时间等。并对竹节形碳纳米管的形貌和生长机制进行了详细的讨论。  相似文献   

15.
An effective method of growth by catalytic chemical vapor deposition (CCVD) to get a large-scale yield of carbon nanotubes is reported. In this method, acetylene is decomposed catalytically over well-dispersed metal particles (Co-Fe and Co-Ni) embedded in commercially available zeolite at a lower temperature (600-700 degrees C). The two binary-metal catalysts (Co-Fe and Co-Ni) used are compared by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Crucial reaction parameters, such as reaction time, temperature, and the effect of purity of gas to obtain optimum production of the nanotubes, both qualitatively and quantitatively, are also reported.  相似文献   

16.
电泳法制备碳纳米管场发射阴极的研究   总被引:5,自引:0,他引:5  
利用传统的电泳方法,在玻璃基片上成功地制备了场发射用碳纳米管阴极薄膜.用扫描电子显微镜和拉曼光谱观察了薄膜的形貌和结构,并测试了所制备的薄膜阴极的场发射特性.实验结果表明在玻璃的银浆导电层上沉积了一层较薄而均匀的碳纳米管膜,其场发射特性与丝网印刷工艺制备的阴极有相似甚至更佳的性能,具有更好的发射均匀性.采用电泳方法制备场发射阴极具有简单易行,成本低廉等优势,可以避免丝网印刷工艺带来的有机杂质污染和发射不均匀等问题.  相似文献   

17.
《Thin solid films》2005,471(1-2):140-144
This work examines the relationships among the growth and interlayer reactions of carbon nanotubes (CNTs) to develop an effective process for controlling the nanostructure, orientation and characteristics of CNTs. Vertically oriented CNTs were successfully synthesized by microwave plasma chemical vapor deposition (MPCVD) with CH4/H2 as source gases. Additionally, the Ti and SiO2 barrier layers and the Co catalyst were used in an experiment on the growth of CNTs on the Si wafer. Then, the SiO2 barrier layer was deposited by low-pressure chemical vapor deposition (LPCVD). The Ti barrier layer and Co catalyst films were deposited on the Si wafer by physical vapor deposition (PVD). The deposited nanostructures were characterized by scanning and transmission electron microscopy, the results of which reveal that the deposited MWCNTs were grown under the influence of a catalyst on Si substrates with or without a barrier layer, by MPCVD. Vertically grown, dense MWCNTs attached to a catalytic film demonstrate that various MWCNTs penetrated the root particles. The diameter of the root particles, of approximately in the order of 100 nm, is larger than those of the tube, 10–15 nm. The well-known model of the growth of CNTs includes base- and tip-root growth. The interaction between the catalytic film and the supporting barrier layer is suggested to determine whether the catalytic particles are driven up or pinned down on the substrate during the growth.  相似文献   

18.
Carbon helix nanofibers were synthesized by a hot filament assisted chemical vapor deposition at a substrate temperature of 600 °C. It was observed that the formation of a carbon helix structure was attributed to the mixing of cobalt catalyst particles with copper. The diameter of carbon helixes varied from 20 to 500 nm. The growth mechanism and the structure of these carbon helix nanofibers are discussed based on scanning electron microscopy and Raman spectroscopy measurements.  相似文献   

19.
Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.  相似文献   

20.
In this study, carbon fibers with different morphologies, including coiled carbon nanofibers and straight carbon fibers, were obtained by the chemical vapor deposition using a Cu-catalytic pyrolysis of acetylene at 250 °C. The influences of nano-copper catalyst particle size and the reaction temperature on the morphology of carbon fibers were investigated. Under the same reaction condition, coiled carbon nanofibers generally were synthesized using nano-copper catalyst with smaller particles size, and bigger copper particles are apt to produce straight carbon fibers. With decreasing of reaction temperature to 200 °C, straight carbon fibers were obtained, instead of coiled carbon nanofibers at 250 °C. The product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号