首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A synergistic approach combining new material design and interfacial engineering of devices is adopted to produce high efficiency inverted solar cells. Two new polymers, based on an indacenodithieno[3,2‐b]thiophene‐difluorobenzothiadiazole (PIDTT‐DFBT) donor–acceptor (D–A) polymer, are produced by incorporating either an alkyl thiophene (PIDTT‐DFBT‐T) or alkyl thieno[3,2‐b]thiophene (PIDTT‐DFBT‐TT) π‐bridge as spacer. Although the PIDTT‐DFBT‐TT polymer exhibits decreased absorption at longer wavelengths and increased absorption at higher energy wavelengths, it shows higher power conversion efficiencies in devices. In contrast, the thiophene bridged PIDTT‐DFBT‐T shows a similar change in its absorption spectrum, but its low molecular weight leads to reduced hole mobilities and performance in photovoltaic cells. Inverted solar cells based on PIDTT‐DFBT‐TT are explored by modifying the electron‐transporting ZnO layer with a fullerene self‐assembled monolayer and the MoO3 hole‐transporting layer with graphene oxide. This leads to power conversion efficiencies as high as 7.3% in inverted cells. PIDTT‐DFBT‐TT's characteristic strong short wavelength absorption and high efficiency suggests it is a good candidate as a wide band gap material for tandem solar cells.  相似文献   

2.
The synthesis of a new thieno[3,2‐b]thiophene isoindigo (iITT) based monomer unit, and its subsequent incorporation into a series of alternating copolymers is reported. Copolymerisation with benzothiadiazole, bithiophene and thiophene comonomer units by palladium catalysed cross coupling gives three new narrow band gap semiconducting polymers for OFET applications. Extending the fused nature of the isoindigo core serves to further enhance molecular orbital overlap along the polymer backbones and facilitate good charge transport characteristics thus demonstrating the potential of extending the fused ring system that is attached to the isoindigo core. When used as the semiconducting channel in top‐gate/bottom‐contact OFET devices, good ambipolar properties are observed, with hole and electron mobilities up to 0.4 cm2/Vs and 0.7 cm2/Vs respectively. The three new polymers show good stability, with high temperature annealing showing an increase in the crystallinity of the polymers which corresponds directly to charge carrier mobility improvement as shown by X‐ray diffraction, atomic force microscopy and photothermal deflection spectroscopy.  相似文献   

3.
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV.  相似文献   

4.
A study of the optical properties of poly(9,9‐dioctylfluorene‐co‐bithiophene) (F8T2) is reported, identifying this polymer as one that possesses a desirable combination of charge transport and light emission properties. The optical and morphological properties of a series of polymer blends with F8T2 dispersed in poly(9,9‐dioctylfluorene) (PFO) are described and almost pure‐green emission from light emitting diodes (LEDs) based thereon is demonstrated. High luminance green electroluminescence from LEDs using only a thin film of F8T2 for emission is also reported. The latter demonstration for a polymer previously primarily of interest for effective charge transport constitutes an important step in the development of emissive materials for applications where a union of efficient light emission and effective charge transport is required.  相似文献   

5.
The photovoltaic performance and optoelectronic properties of a donor–acceptor copolymer are reported based on indacenodithienothiophene (IDTT) and 2,3‐bis(3‐(octyloxy)phenyl)quinoxaline moieties (PIDTTQ) as a function of the number‐average molecular weight (Mn). Current–voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo‐CELIV) reveal improved charge generation and charge transport properties in these high band gap systems with increasing Mn, while polymers with low molecular weight suffer from diminished charge carrier extraction because of low mobility–lifetime (μτ) product. By combining Fourier‐transform photocurrent spectroscopy (FTPS) with electroluminscence spectroscopy, it is demonstrate that increasing Mn reduces the nonradiative recombination losses. Solar cells based on PIDTTQ with Mn = 58 kD feature a power conversion efficiency of 6.0% and a charge carrier mobility of 2.1 × 10?4 cm2 V?1 s?1 when doctor bladed in air, without the need for thermal treatment. This study exhibits the strong correlations between polymer fractionation and its optoelectronics characteristics, which informs the polymer design rules toward highly efficient organic solar cells.  相似文献   

6.
7.
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices.  相似文献   

8.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

9.
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed.  相似文献   

10.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

11.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

12.
N‐type organic small molecules (SMs) are attracting attention in the organic electronics field, due to their easy purification procedures with high yield. However, only a few reports show SMs that perform well in both organic field‐effect transistors (OFETs) and organic solar cells (OSCs). Here, the synthesis and characterization of an n‐type small molecule with an indacenodithieno[3,2‐b]thiophene (IDTT) core unit and linear alkylated side chain (C16) (IDTTIC) are reported. Compared to the state‐of‐the‐art n‐type molecule IDTIC, IDTTIC exhibits smaller optical bandgap and higher absorption coefficient, which is due to the enhanced intramolecular effect. After mixing with the polymer donor PBDB‐T, IDTIC‐based solar cells deliver a power conversion efficiency of only 5.67%. In stark contrast, the OSC performance of IDTTIC improves significantly to 11.2%. It is found that the superior photovoltaic properties of PBDB‐T:IDTTIC blends are mainly due to reduced trap‐assisted recombination and enhanced molecular packing coherence length and higher domain purity when compared to IDTIC. Moreover, a significantly higher electron mobility of 0.50 cm2 V−1 s−1 for IDTTIC in OFET devices than for IDTIC (0.15 cm2 V−1 s−1) is obtained. These superior performances in OSCs and OFETs demonstrate that SMs with extended π‐conjugation of the backbone possess a great potential for application in organic electronic devices.  相似文献   

13.
Considering there is growing interest in the superior charge transport in the (E)‐2‐(2‐(thiophen‐2‐yl)‐vinyl)thiophene (TVT)‐based polymer family, an essential step forward is to provide a deep and comprehensive understanding of the structure–property relationships with their polymer analogs. Herein, a carefully chosen set of DPP‐TVT‐n polymers are reported here, involving TVT and diketopyrrolopyrrole (DPP) units that are constructed in combination with varying thiophene content in the repeat units, where n is the number of thiophene spacer units. Their OFET characteristics demonstrate ambipolar behavior; in particular, with DPP‐TVT‐0 a nearly balanced hole and electron transport are observed. Interestingly, the majority of the charge‐transport properties changed from ambipolar to p‐type dominant, together with the enhanced hole mobilities, as the electron‐donating thiophene spacers are introduced. Although both the lamellar d‐spacings and π‐stacking distances of DPP‐TVT‐n decreased with as the number of thiophene spacers increased, DPP‐TVT‐1 clearly shows the highest hole mobility (up to 2.96 cm2 V?1 s?1) owing to the unique structural conformations derived from its smaller paracrystalline distortion parameter and narrower plane distribution relative to the others. These in‐depth studies should uncover the underlying structure–property relationships in a relevant class of TVT‐like semiconductors, shedding light on the future design of top‐performing semiconducting polymers.  相似文献   

14.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

15.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

16.
Herein, this study investigates the impact of branching‐point‐extended alkyl chains on the charge transport properties of three ultrahigh n‐type mobility conjugated polymers. Using grazing incidence wide‐angle X‐ray scattering, analysis of the crystallinity of the series shows that while π–π interactions are increased for all three polymers as expected, the impact of the side‐chain engineering on polymer backbone crystallinity is unique to each polymer and correlates to the observed changes in charge transport. With the three polymers exhibiting n‐type mobilities between 0.63 and 1.04 cm2 V?1 s?1, these results ratify that the indolonaphthyridine building block has an unprecedented intrinsic ability to furnish high‐performance n‐type organic semiconductors.  相似文献   

17.
The use of electrostatic charge injection (i.e., the transverse field effect) to induce both very large two‐dimensional hole densities (~ 1015 charges cm–2) and metallic conductivities in poly(3‐hexylthiophene) (P3HT) is reported. Films of P3HT are electrostatically gated by a solution‐deposited polymer‐electrolyte gate dielectric in a field‐effect‐transistor configuration. Exceptionally high hole field‐effect mobilities (up to 0.7 cm2 V–1 s–1) are measured concurrently with large hole densities, resulting in an extremely large sheet conductance of 200 μS sq.–1. The large room‐temperature conductivity of 1000 S cm–1 together with the very low measured activation energies (0.7–4 meV) suggest that the metal–insulator transition in P3HT is achieved. A maximum in sheet conductance versus charge density is also observed, which may result from near‐filling of the valence band or from charge correlations that lower the carrier mobility. Importantly, the large hole densities in P3HT are achieved using capacitive coupling between the polymer‐electrolyte gate dielectric and P3HT (i.e., the field effect) and not via chemical or electrochemical doping. Electrostatic control of carrier density up to 1015 charges cm–2 (~ 1022 charges cm–3) opens opportunities to explore systematically the importance of charge‐correlation effects on transport in conjugated polymers without the structural rearrangement associated with chemical or electrochemical doping.  相似文献   

18.
Cubic phase CsPbI3 (α‐CsPbI3) perovskite quantum dots (QDs) have received extensive attention due to their all‐inorganic composition and suitable band gap (1.73 eV). However, α‐CsPbI3 QDs might convert to δ‐CsPbI3 (orthorhombic phase with indirect band gap of 2.82 eV) due to easy loss of surface ligands. In addition, commonly used long‐chain ligands (oleic acid, OA, and oleylamine, OLA) hinder efficient charge transport in optoelectronic devices. In order to relieve these drawbacks, OA, OLA, octanoic acid, and octylamine are used as capping ligands for synthesizing high‐quality α‐CsPbI3 QDs. The results indicate that these QDs exhibit excellent optical properties and long‐term stability compared to QDs capped only with OA and OLA. Moreover, QDs with shorter ligands exhibit an enhanced charge transport rate, which improves the power conversion efficiency of photovoltaic devices from 7.76% to 11.87%.  相似文献   

19.
This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm?2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm?1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm?2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.  相似文献   

20.
New classes of liquid‐crystalline semiconductor polymers based on perylene diester benzimidazole and perylene diester imide mesogens are reported. Two highly soluble side‐chain polymers, poly(perylene diester benzimidazole acrylate) (PPDB) and poly(perylene diester imide acrylate) (PPDI) are synthesized by nitroxide‐mediated radical polymerization (NMRP). PPDB shows n‐type semiconductor performance with electron mobilities of 3.2 × 10?4 cm2 V?1 s?1 obtained in a diode configuration by fitting the space‐charge‐limited currents (SCLC) according to the Mott–Gurney equation. Interestingly, PPDI performs preferentially as a p‐type material with a hole mobility of 1.5 × 10?4 cm2 V?1 s?1, which is attributed to the less electron‐deficient perylene core of PPDI compared to PPDB. Optical properties are investigated by UV‐vis and fluorescence spectroscopy. The extended π‐conjugation system due to the benzimidazole unit of PPDB leads to a considerably broader absorption in the visible region compared to PPDI. HOMO and LUMO levels of the polymers are also determined by cyclic voltammetry; the resulting energy band‐gaps are 1.86 eV for PPDB and 2.16 eV for PPDI. Thermal behavior and liquid crystallinity are studied by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction measurements. The results indicate liquid‐crystalline order of the polymers over a broad temperature range. These thermal, electrical, and optical properties make the perylene side‐chain polymers attractive materials for organic photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号