首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

2.
Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm?2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm?2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.  相似文献   

3.
Li–S batteries benefit from numerous advantages such as high theoretical capacity, high energy density, and availability of an abundance of sulfur. However, commercialization of Li–S batteries has been impeded because of low loading amount of active materials and poor cycle performance. Herein, a freestanding bilayer carbon–sulfur (FBCS) cathode is reported with superior electrochemical performance at a high sulfur loading level (3 mg cm?2). The top component of the FBCS cathode is composed of interlacing multiwalled carbon nanotubes (MWCNT) and the bottom component is made up of a mixed layer of sulfur imbedded in MWCNT and N‐doped porous carbon (NPC). The MWCNT layer (top part of FBCS cathode) blocks polysulfide migration from the cathode to the anode, and NPC in the bottom part of the FBCS cathode not only provides spacious active sites but also absorbs polysulfide by the nitrogen functional group. The designed novel FBCS cathode delivered a high initial discharge capacity of 964 and 900 mAh g?1 at 0.5 and 1 C, respectively. It also displayed an excellent capacity retention of 83.1% at 0.5 C and 83.4% at 1 C after 300 cycles.  相似文献   

4.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

5.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

6.
The cycling stability of high‐sulfur‐loading lithium–sulfur (Li–S) batteries remains a great challenge owing to the exaggerated shuttle problem and interface instability. Despite enormous efforts on design of advanced electrodes and electrolytes, the stability issue raised from current collectors has been rarely concerned. This study demonstrates that rationally designing a 3D carbonaceous macroporous current collector is an efficient and effective “two‐in‐one” strategy to improve the cycling stability of high‐sulfur‐loading Li–S batteries, which is highly versatile to enable various composite cathodes with sulfur loading >3.7 mAh cm?2. The best cycling performance can be achieved upon 950 cycles with a very low decay rate of 0.029%. Moreover, the origin of such a huge enhancement in cycling stability is ascribed to (1) the inhibition of electrochemical corrosion, which severely occurs on the typical Al foil and disables its long‐term sustainability for charge transfer, and (2) the passivation of cathode surface. The role of the chemical resistivity against corrosion and favorable macroscopic porous structure is highlighted for exploiting novel current collectors toward exceptional cycling stability of high‐sulfur‐loading Li–S batteries.  相似文献   

7.
Herein, high‐content N‐doped carbon nanotube (CNT) microspheres (HNCMs) are successfully synthesized through simple spray drying and one‐step pyrolysis. HNCM possesses a hierarchically porous architecture and high‐content N‐doping. In particular, HNCM800 (HNCM pyrolyzed at 800 °C) shows high nitrogen content of 12.43 at%. The porous structure derived from well‐interconnected CNTs not only offers a highly conductive network and blocks diffusion of soluble lithium polysulfides (LiPSs) in physical adsorption, but also allows sufficient sulfur infiltration. The incorporation of N‐rich CNTs provides strong chemical immobilization for LiPSs. As a sulfur host for lithium–sulfur batteries, good rate capability and high cycling stability is achieved for HNCM/S cathodes. Particularly, the HNCM800/S cathode delivers a high capacity of 804 mA h g?1 at 0.5 C after 1000 cycles corresponding to low fading rate (FR) of only 0.011% per cycle. Remarkably, the cathode with high sulfur loading of 6 mg cm?2 still maintains high cyclic stability (capacity of 555 mA h g?1 after 1000 cycles, FR 0.038%). Additionally, CNT/Co3O4 microspheres are obtained by the oxidation of CNTs/Co in the air. The as‐prepared CNT/Co3O4 microspheres are employed as an anode for lithium‐ion batteries and present excellent cycling performance.  相似文献   

8.
Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g?1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm?2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g?1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm?2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications.  相似文献   

9.
The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm?2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g?1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g?1 after 100 cycles at a current density of 1.3 mA cm?2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g?1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries.  相似文献   

10.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   

11.
Lithium–sulfur (Li–S) batteries present one of the most promising energy storage systems owing to their high energy density and low cost. However, the commercialization of Li–S batteries is still hindered by several technical issues; the notorious polysulfide shuttling and sluggish sulfur conversion kinetics. In this work, unique hierarchical Fe3‐xC@C hollow microspheres as an advanced sulfur immobilizer and promoter for enabling high‐efficiency Li–S batteries is developed. The porous hollow architecture not only accommodates the volume variation upon the lithiation–delithiation processes, but also exposes vast active interfaces for facilitated sulfur redox reactions. Meanwhile, the mesoporous carbon coating establishes a highly conductive network for fast electron transportation. More importantly, the defective Fe3‐xC nanosized subunits impose strong LiPS adsorption and catalyzation, enabling fast and durable sulfur electrochemistry. Attributed to these structural superiorities, the obtained sulfur electrodes exhibit excellent electrochemical performance, i.e., high areal capacity of 5.6 mAh cm?2, rate capability up to 5 C, and stable cycling over 1000 cycles with a low capacity fading rate of 0.04% per cycle at 1 C, demonstrating great promise in the development of practical Li–S batteries.  相似文献   

12.
The battery community has recently witnessed a considerable progress in the cycle lives of lithium‐sulfur (Li‐S) batteries, mostly by developing the electrode structures that mitigate fatal dissolution of lithium polysulfides. Nonetheless, most of the previous successful demonstrations have been based on limited areal capacities. For realistic battery applications, however, the chronic issues from both the anode (lithium dendrite growth) and the cathode (lithium polysulfide dissolution) need to be readdressed under much higher loading of sulfur active material. To this end, the current study integrates the following three approaches in a systematic manner: 1) the sulfur electrode material with diminished lithium polysulfide dissolution by the covalently bonded sulfur‐carbon microstructure, 2) mussel‐inspired polydopamine coating onto the separator that suppresses lithium dendrite growth by wet‐adhesion between the separator and Li metal, and 3) addition of cesium ions (Cs+) to the electrolyte to repel incoming Li ions and thus prevent Li dendrite growth. This combined strategy resolves the long‐standing problems from both electrodes even under the very large sulfur‐carbon composite loading of 17 mg cm?2 in the sulfur electrode, enabling the highest areal capacity (9 mAh cm?2) to date while preserving stable cycling performance.  相似文献   

13.
Despite their high theoretical specific capacity (1675 mA h g?1), the practical application of Li–S batteries remains limited because the capacity rapidly degrades through severe dissolution of lithium polysulfide and the rate capability is low because of the low electronic conductivity of sulfur. This paper describes novel hierarchical yolk–shell microspheres comprising 1D bamboo‐like N‐doped carbon nanotubes (CNTs) encapsulating Co nanoparticles (Co@BNCNTs YS microspheres) as efficient cathode hosts for Li–S batteries. The microspheres are produced via a two‐step process that involves generation of the microsphere followed by N‐doped CNTs growth. The hierarchical yolk–shell structure enables efficient sulfur loading and mitigates the dissolution of lithium polysulfides, and metallic Co and N doping improves the chemical affinity of the microspheres with sulfur species. Accordingly, a Co@BNCNTs YS microsphere‐based cathode containing 64 wt% sulfur exhibits a high discharge capacity of 700.2 mA h g?1 after 400 cycles at a current density of 1 C (based on the mass of sulfur); this corresponds to a good capacity retention of 76% and capacity fading rate of 0.06% per cycle with an excellent rate performance (752 mA h g?1 at 2.0 C) when applied as cathode hosts for Li–S batteries.  相似文献   

14.
Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g?1), ultralarge surface area (2546 m2 g?1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn?1 at an unprecedentedly high rate of 120 mA cm?2, with an ultrahigh power density of 197 mW cm?2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g?1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.  相似文献   

15.
3D metal carbide@mesoporous carbon hybrid architecture (Ti3C2Tx@Meso‐C, TX ≈ FxOy) is synthesised and applied as cathode material hosts for lithium‐sulfur batteries. Exfoliated‐metal carbide (Ti3C2Tx) nanosheets have high electronic conductivity and contain rich functional groups for effective trapping of polysulfides. Mesoporous carbon with a robust porous structure provides sufficient spaces for loading sulfur and effectively cushion the volumetric expansion of sulfur cathodes. Theoretical calculations have confirmed that metal carbide can absorb sulfur and polysulfides, therefore extending the cycling performance. The Ti3C2Tx@Meso‐C/S cathodes have achieved a high capacity of 1225.8 mAh g?1 and more than 300 cycles at the C/2 current rate. The Ti3C2Tx@Meso‐C hybrid architecture is a promising cathode host material for lithium‐sulfur batteries.  相似文献   

16.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

17.
To eliminate capacity‐fading effects due to the loss of sulfur cathode materials as a result of polysulfide dissolution in lithium–sulfur (Li–S) cells, 3D carbon aerogel (CA) materials with abundant narrow micropores can be utilized as an immobilizer host for sulfur impregnation. The effects of S incorporation on microstructure, surface area, pore size distribution, and pore volume of the S/CA hybrids are studied. The electrochemical performance of the S/CA hybrids is investigated using electrochemical impedance spectroscopy, galvanostatical charge–discharge, and cyclic voltammetry techniques. The 3D porous S/CA hybrids exhibit significantly improved reversible capacity, high‐rate capability, and excellent cycling performance as a cathode electrode for Li–S batteries. The S/CA hybrid with an optimal incorporating content of 27% S shows an excellent reversible capacity of 820 mAhg?1 after 50 cycles at a current density of 100 mAg?1. Even at a current density of 3.2C (5280 mAg?1), the reversible capacity of 27%S/CA hybrid can still maintain at 521 mAhg?1 after 50 cycles. This strategy for the S/CA hybrids as cathode materials to utilize the abundant micropores for sulfur immobilizers for sulfur impregnation for Li–S battery offers a new way to solve the long‐term reversibility obstacle and provides guidelines for designing cathode electrode architectures.  相似文献   

18.
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g?1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g?1 at the 75th cycle and a reversible capacity of 460 mAh g?1 at the 500th cycle under a current density of 1 A g?1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.  相似文献   

19.
Sulfur is appealing as a high‐capacity cathode for rechargeable lithium batteries as it offers a high theoretical capacity of 1672 mA h g?1 and is abundant. However, the commercialization of Li‐S batteries is hampered by fast capacity fade during both dynamic cell cycling and static cell resting. The poor electrochemical stability is due to polysulfide diffusion, leading to a short cycle life and severe self‐discharge. Here, we present the design of a bifunctional separator with a light‐weight carbon‐coating that integrates the two necessary components already inside the cell: the conductive carbon and the separator. With no extra additives, this bifunctional carbon‐coated separator allows the use of pure sulfur cathodes involving no complex composite synthesis process, provides a high initial discharge capacity of 1389 mA h g?1 with excellent dynamic stability, and facilitates a high reversible capacity of 828 mA h g?1 after 200 cycles. In addition, the static stability is evidenced by low self‐discharge and excellent capacity retention after a 3 month rest period.  相似文献   

20.
Although lithium–sulfur (Li–S) batteries are one of the most promising energy storage devices owing to their high energy densities, the sluggish reaction kinetics and severe shuttle effect of the sulfur cathodes hinder their practical applications. Here, single atom zinc implanted MXene is introduced into a sulfur cathode, which can not only catalyze the conversion reactions of polysulfides by decreasing the energy barriers from Li2S4 to Li2S2/Li2S but also achieve strong interaction with polysulfides due to the high electronegativity of atomic zinc on MXene. Moreover, it is found that the homogenously dispersed zinc atoms can also accelerate the nucleation of Li2S2/Li2S on MXene layers during the redox reactions. As a result, the sulfur cathode with single atom zinc implanted MXene exhibits a high reversible capacity of 1136 mAh g?1. After electrode optimization, a high areal capacity of 5.3 mAh cm?2, high rate capability of 640 mAh g?1 at 6 C, and good cycle stability (80% capacity retention after 200 cycles at 4 C) can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号