首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, a technique using mixed transition‐metal oxides as contact interlayers to modulate both the electron‐ and hole‐injections in ambipolar organic field‐effect transistors (OFETs) is presented. The cesium carbonate (Cs2CO3) and vanadium pentoixide (V2O5) are found to greatly and independently improve the charge injection properties for electrons and holes in the ambipolar OFETs using organic semiconductor of diketopyrrolopyrrolethieno[3,2‐b]thiophene copolymer (DPPT‐TT) and contact electrodes of molybdenum (Mo). When Cs2CO3 and V2O5 are blended at various mixing ratios, they are observed to very finely and constantly regulate the Mo's work function from ?4.2 eV to ?4.8 eV, leading to high electron‐ and hole‐mobilities as high as 2.6 and 2.98 cm2 V?1 s?1, respectively. The most remarkable finding is that the device characteristics and device performance can be gradually controlled by adjusting the composition of mixed‐oxide interlayers, which is highly desired for such applications as complementary circuitry that requires well matched n‐channel and p‐channel device operations. Therefore, such simple interface engineering in conjunction with utilization of ambipolar semiconductors can truly enable the promising low‐cost and soft organic electronics for extensive applications.  相似文献   

3.
Light emission from ambipolar organic field‐effect transistors (OFETs) is often observed when they are operated in the unipolar regime. This is unexpected, the light emission should be completely suppressed, because in the unipolar regime only one type of charge carrier is accumulated. Here, an electroluminescent diketopyrrolopyrrole copolymer is investigated. Local potential measurements by scanning Kelvin probe microscopy reveal a recombination position that is unstable in time due to the presence of injection barriers. The electroluminescence and electrical transport have been numerically analyzed. It is shown that the counterintuitive unipolar light emission is quantitatively explained by injection of minority carriers into deep tail states of the semiconductor. The density of the injected minority carriers is small. Hence they are relatively immobile and they recombine close the contact with accumulated majority carriers. The unipolar light output is characterized by a constant efficiency independent of gate bias. It is argued that light emission from OFETs predominantly originates from the unipolar regime when the charge transport is injection limited.  相似文献   

4.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

5.
Doping is a powerful tool to overcome contact limitations in short‐channel organic field‐effect transistors (OFETs) and has been successfully used in the past to improve the charge carrier injection in OFETs. The present study applies this familiar concept to the architecture of vertical organic field‐effect transistors (VOFETs), which are often severely limited by injection due to their very short channel lengths. The present study shows that the performance of p‐type VOFETs with pentacene as an active material can be significantly enhanced by the addition of the common p‐dopant C60F36 as a thin injection layer underneath the VOFET source electrode, resulting in an increase of On‐state current and On/Off ratio by one order of magnitude. The present study further investigates mixed injection layers of pentacene and the p‐dopant and finds that the improvement is less pronounced than for the pure dopant layers and depends on the concentration of dopant molecules in the injection layer. Through application of the transfer length method to equivalent OFET geometries, the present study is finally able to link the observed improvement to a decrease in transfer length and can thus conclude that this length is a crucial parameter onto which further improvement efforts have to be concentrated to realize true short‐channel VOFETs.  相似文献   

6.
Controlling contact resistance in organic field‐effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light‐emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) ambipolar OFETs using thiol‐based self‐assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM‐induced work‐function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM‐induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top‐gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors.  相似文献   

7.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

8.
Organic thin‐film transistors (TFTs) are prepared by vacuum deposition and solution shearing of 2,9‐bis(perfluoroalkyl)‐substituted tetraazaperopyrenes (TAPPs) with bromine substituents at the aromatic core. The TAPP derivatives are synthesized by reacting known unsubstituted TAPPs with bromine in fuming sulphuric acid, and their electrochemical properties are studied in detail by cyclic voltammetry and modelled with density functional theory (DFT) methods. Lowest unoccupied molecular orbital (LUMO) energies and electron affinities indicate that the core‐brominated TAPPs should exhibit n‐channel semiconducting properties. Current‐voltage characteristics of the TFTs established electron mobilities of up to μn = 0.032 cm2 V?1 s?1 for a derivative which was subsequently processed in the fabrication of a complementary ring oscillator on a flexible plastic substrate (PEN).  相似文献   

9.
The effect of dye‐doping in ambipolar light‐emitting organic field‐effect transistors (LE‐OFETs) is investigated from the standpoint of the carrier mobilities and the electroluminescence (EL) characteristics under ambipolar operation. Dye‐doping of organic crystals permits not only tuning of the emission color but also significantly increases the efficiency of ambipolar LE‐OFETs. A rather high external EL quantum efficiency (~0.64%) of one order of magnitude higher than that of a pure p‐distyrylbenzene (P3V2) single crystal is obtained by tetracene doping. The doping of tetracene molecules into a host P3V2 crystal has almost no effect on the electron mobility and the dominant carrier recombination process in the tetracene‐doped P3V2 crystal involves direct carrier recombination on the tetracene molecules.  相似文献   

10.
11.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

12.
Organic field‐effect transistors (OFETs) often deviate from ideal behaviors in air, which masks their intrinsic properties and thus significantly impedes their practical applications. A key issue of how the presence of air affects the ideality of OFETs has not yet been fully understood. It is revealed that air atmosphere may exert a double‐edged sword effect on the active semiconductor layer when determining the ideality of OFETs fabricated from p‐type crystalline organic semiconductors. Upon exposing the as‐fabricated device to air, water and oxygen mainly function as efficient p‐type dopants for the active layer in the contact regions, enhancing charge carrier injection and consequently improving device ideality. Nevertheless, as the exposure time increases, the trapping centers for the injected minority charge carriers appear in the channel region, leading to degradation of device ideality. Inspired by the double‐edged sword behavior of air, a near‐ideal OFET is achieved by ingeniously utilizing the doping/positive effect and eliminating the trapping/negative effect. The effect of air on the ideality of p‐type OFETs is clarified, which not only illuminates some common observations of OFETs in air but also offers useful guidance for the construction of high‐performance ideal OFETs.  相似文献   

13.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

14.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

15.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

16.
Surface doping allows tuning the electronic structure of semiconductors at near‐surface regime and is normally accomplished through the deposition of an ultrathin layer on top or below the host material. Surface doping is particularly appealing in organic field‐effect transistors (OFETs) where charge transport takes place at the first monolayers close to the dielectric surface. However, due to fabrication restrictions that OFET architecture imparts, this is extremely challenging. Here, it is demonstrated that mercury cations, Hg2+, can be exploited to control doping levels at the top surface of a thin film of a p‐type organic semiconductor blended with polystyrene. Electrolyte‐ or water‐gated field‐effect transistors, which have its conductive channel at the top surface of the organic thin film, turn out to be a powerful tool for monitoring the process. A positive shift of the threshold voltage is observed in the devices upon Hg2+ exposure. Remarkably, this interaction has been proved to be specific to Hg2+ with respect to other divalent cations and sensitive down to nanomolar concentrations. Hence, this work also opens new perspectives for employing organic electronic transducers in portable sensors for the detection of an extremely harmful water pollutant without the need of using specific receptors.  相似文献   

17.
Many high charge carrier mobility (μ) active layers within organic field‐effect transistor (OFET) configurations exhibit non‐linear current–voltage characteristics that may drift with time under applied bias and, when applying conventional equations for ideal FETs, may give inconsistent μ values. This study demonstrates that the introduction of electron deficient fullerene acceptors into thin films comprised of the high‐mobility semiconducting polymer PCDTPT suppresses an undesirable “double‐slope” in the current–voltage characteristics, improves operational stability, and changes ambipolar transport to unipolar transport. Examination of other high μ polymers shows general applicability. This study also shows that one can further reduce instability by tuning the relative electron affinity of the polymer and fullerene by creating blends containing different fullerene derivatives and semiconductor polymers. One can obtain hole μ values up to 5.6 cm2 V–1 s–1 that are remarkably stable over multiple bias‐sweeping cycles. The results provide a simple, solution‐processable route to dictate transport properties and improve semiconductor durability in systems that display similar non‐idealities.  相似文献   

18.
Contact resistance limits the performance of organic field‐effect transistors, especially those based on high‐mobility semiconductors. Despite intensive research, the nature of this phenomenon is not well understood and mitigation strategies are largely limited to complex schemes often involving co‐evaporated doped interlayers. Here, this study shows that solution self‐assembly of a polyelectrolyte monolayer on a metal electrode can induce carrier doping at the contact of an organic semiconductor overlayer, which can be augmented by dopant ion‐exchange in the monolayer, to provide ohmic contacts for both p‐ and n‐type organic field‐effect transistors. The resultant 2D‐doped profile at the semiconductor interface is furthermore self‐aligned to the contact and stabilized against counterion migration. This study shows that Coulomb potential disordering by the polyelectrolyte shifts the semiconductor density‐of‐states into the gap to promote extrinsic doping and cascade carrier injection. Contact resistivities of the order of 0.1–1 Ω cm2 or less have been attained. This will likely also provide a platform for ohmic injection into other advanced semiconductors, including 2D and other nanomaterials.  相似文献   

19.
The thin‐film structures of chemical sensors based on conventional organic field‐effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze‐drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin‐film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm?1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.  相似文献   

20.
The planarization of bottom‐contact organic field‐effect transistors (OFETs) resulting in dramatic improvement in the nanomorphology and an associated enhancement in charge injection and transport is reported. Planar OFETs based on regioregular poly(3‐hexylthiophene) (rr‐P3HT) are fabricated wherein the Au bottom‐contacts are recessed completely in the gate‐dielectric. Normal OFETs having a conventional bottom‐contact configuration with 50‐nm‐high contacts are used for comparison purpose. A modified solvent‐assisted drop‐casting process is utilized to form extremely thin rr‐P3HT films. This process is critical for direct visualization of the effect of planarization on the polymer morphology. Atomic force micrographs (AFM) show that in a normal OFET the step between the surface of the contacts and the gate dielectric disrupts the self‐assembly of the rr‐P3HT film, resulting in poor morphology at the contact edges. The planarization of contacts results in notable improvement of the nanomorphology of rr‐P3HT, resulting in lower resistance to charge injection. However, an improvement in field‐effect mobility is observed only at short channel lengths. AFM shows the presence of well‐ordered nanofibrils extending over short channel lengths. At longer channel lengths the presence of grain boundaries significantly minimizes the effect of improvement in contact geometry as the charge transport becomes channel‐limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号