首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper addresses a tracking problem for uncertain nonlinear discrete‐time systems in which the uncertainties, including parametric uncertainty and external disturbance, are periodic with known periodicity. Repetitive learning control (RLC) is an effective tool to deal with periodic unknown components. By using the backstepping procedures, an adaptive RLC law with periodic parameter estimation is designed. The overparameterization problem is overcome by postponing the parameter estimation to the last backstepping step, which could not be easily solved in robust adaptive control. It is shown that the proposed adaptive RLC law without overparameterization can guarantee the perfect tracking and boundedness of the states of the whole closed‐loop systems in presence of periodic uncertainties. In addition, the effectiveness of the developed controller is demonstrated by an implementation example on a single‐link flexible‐joint robot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Adaptive control is applied to a particular class of SISO discrete‐time non‐linear systems. Global boundedness and convergence are obtained by introducing a modification to a classical adaptive scheme. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
A direct adaptive non‐linear control framework for multivariable non‐linear uncertain systems with exogenous bounded disturbances is developed. The adaptive non‐linear controller addresses adaptive stabilization, disturbance rejection and adaptive tracking. The proposed framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the plant. In the case of bounded energy L2 disturbances the proposed approach guarantees a non‐expansivity constraint on the closed‐loop input–output map. Finally, several illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This work presents a new adaptive control algorithm for a class of discrete‐time systems in strict‐feedback form with input delay and disturbances. The immersion and invariance formulation is used to estimate the disturbances and to compensate the effect of the input delay, resulting in a recursive control law. The stability of the closed‐loop system is studied using Lyapunov functions, and guidelines for tuning the controller parameters are presented. An explicit expression of the control law in the case of multiple simultaneous disturbances is provided for the tracking problem of a pneumatic drive. The effectiveness of the control algorithm is demonstrated with numerical simulations considering disturbances and input‐delay representative of the application.  相似文献   

5.
It is known that large classes of approximately‐finite‐memory maps can be uniformly approximated arbitrarily well by the maps of certain non‐linear structures. As an application, it was proved that time‐delay networks can be used to uniformly approximate arbitrarily well the members of a large class of causal nonlinear dynamic discrete‐time input–output maps. However, the proof is non‐constructive and provides no information concerning the determination of a structure that corresponds to a prescribed bound on the approximation error. Here we give some general results concerning the problem of finding the structure. Our setting is as follows. There is a large family 𝒢 of causal time‐invariant approximately‐finite‐memory input‐output maps G from a set S of real d‐vector‐valued discrete‐time inputs (with d⩾1) to the set of ℝ‐valued discrete‐time outputs, with both the inputs and outputs defined on the non‐negative integers 𝒵+. We show that for each ϵ>0, any Gϵ𝒢 can be uniformly approximated by a structure map H(G, ·) to within tolerance ϵ, and we give analytical results and an example to illustrate how such a H(G, ·) can be determined in principle. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Rejection of unknown periodic disturbances in multi‐channel systems has several industrial applications that include aerospace, consumer electronics, and many other industries. This paper presents a design and analysis of an output‐feedback robust adaptive controller for multi‐input multi‐output continuous‐time systems in the presence of modeling errors and broadband output noise. The trade‐off between robust stability and performance improvement as well as practical design considerations for performance improvements are presented. It is demonstrated that proper shaping of the open‐loop plant singular values as well as over‐parameterizing the controller parametric model can significantly improve performance. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper the output tracking control problem for a class of non‐linear time delay systems with some unknown constant parameters is addressed. Such a problem is solved in the case that the non‐linear time‐delay system has full delay relative degree and stable internal dynamics. It is supposed moreover that the output and its time derivatives until n?1, where n is the length of the state vector (euclidean part), do not depend explicitly on the unknown parameters. This work is the first step towards the application of the methodologies of adaptive control for non‐linear delayless systems, based on tools of differential geometry, to non‐linear time‐delay systems too. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A direct hybrid adaptive control framework for non‐linear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop hybrid system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the hybrid plant states. Furthermore, hybrid adaptive controllers guaranteeing attraction of the closed‐loop system plant states are also developed. Finally, two numerical examples are provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
At the present time, there is a great deal of interest in the adaptive control of systems with rapidly varying parameters. Such problems arise in different forms and in many disciplines including finance, sociology, biology, and engineering. In general, these problems are intractable mathematically and the time variations have to be classified in some form to obtain rigorous results. In this paper, we consider the adaptive identification and control of linear systems with periodically varying parameters (referred to as linear time‐varying periodic (LTP) systems). The class of systems with known periodic parameters has been investigated widely since the pioneering work of Floquet and lends itself to rigorous mathematical analysis. However, very little was known until the early years of the last decade concerning the adaptive control of such systems. The problem was introduced by Xu and explored in detail by Narendra and Zhiling in 2006 and 2009, respectively. In 2012, a new method was introduced in adaptive control by Han and Narendra and is referred to as second‐level adaptation. In this paper, the adaptive identification and control of LTP systems using second‐level adaptation is discussed.  相似文献   

10.
Without using Nussbaum gain, a novel method is presented to solve the unknown control direction problem for discrete‐time systems. The underlying idea is to fully exploit the convergence property of parameter estimates in well‐known adaptive algorithms. By incorporating two modifications into the control and the parameter update laws, respectively, we present an adaptive iterative learning control scheme for discrete‐time varying systems without the prior knowledge of the sign of control gain. It is shown that the proposed adaptive iterative learning control can achieve perfect tracking over the finite time interval while all the closed‐loop signals remain bounded. An illustrative example is presented to verify effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Simplified adaptive control (SAC) has simple structure and is readily implemented in real systems, but few real applications have as yet been reported. A discrete‐time algorithm for SAC has recently been proposed by one of the authors. Although it solves the problem of unavoidable time delay arising in the discretization of the continuous‐time algorithm, the algorithm generally produces a bounded output error between the controlled plant and the reference model due to a feedforward gain added in parallel to the controlled plant so as to satisfy the positive real (ASPR) property with almost complete rigor. This paper treats the applicability of the SAC algorithm to a real system, that is, the position control of a dc motor with variable load. The algorithm used here is modified, and the feedforward compensator is inserted in parallel not only to the controlled plant, but also to the reference model. The algorithm guarantees that the output error vanishes asymptotically. The control performance is examined by both simulation and testing of an actual system and is compared with that of a conventional PID control. These results illustrate satisfactory control performance and verify the applicability of the modified algorithm. © 2001 Scripta Technica, Electr Eng Jpn, 135(1): 33–42, 2001  相似文献   

12.
Discrete‐time model reference adaptive control (MRAC) is considered with both least squares and projection algorithm parameter identification. For both cases complete Lyapunov proofs are given for stability and convergence. The results extend the approach of Johansson (Int. J. Control 1989; 50 (3):859–869) to include Lyapunov stability for MRAC when the normalized projection algorithm is used for parameter identification. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the problem of robust adaptive tracking for uncertain discrete‐time systems is considered from the slowly varying systems point of view. The class of uncertain discrete‐time systems considered is subjected to both 𝓁 to 𝓁 bounded unstructured uncertainty and external additive bounded disturbances. A priori knowledge of the dynamic model of the reference signal to be tracked is not completely known. For such problem, an indirect adaptive tracking controller is obtained by frozen‐time controllers that at each time optimally robustly stabilize the estimated models of the plant and minimize the worst‐case steady‐state absolute value of the tracking error of the estimated model over the model uncertainty. Based on 𝓁 to 𝓁 stability and performance of slowly varying system found in the literature, the proposed adaptive tracking scheme is shown to have good robust stability. Moreover, a computable upper bound on the size of the unstructured uncertainty permitted by the adaptive system and a computable tight upper bound on asymptotic robust steady‐state tracking performance are provided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Adaptive interference cancelation is of vital importance in a broad array of scientific and engineering disciplines. In this paper we develop a closed‐loop discrete‐time interference cancelation algorithm. The novel features of this algorithm are its ability to deal with multiple channels being affected by interferences with different frequency spectrums. Also we provide a proof of Lyapunov stability of closed‐loop system and asymptotically perfect interference cancelation for a class of interference signals. Furthermore, we introduce a new approach for updating the estimator through the use of staggered estimate. The goal of staggered estimation is to minimize the total number of estimates/calculations done within a time period while ensuring that there is no estimator aliasing. Finally, the proposed algorithm is implemented on an TMS320C6713 DSP Kit and an experimental verification is obtained. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with state feedback adaptive control of parametric‐strict‐feedback (triangular) non‐linear systems with unknown virtual control coefficients. A priori knowledge of the signs of the virtual coefficients is not required, and control signals and adaptive laws are smooth. Asymptotic tracking of smooth reference signals is achieved while all the variables remain bounded. The proposed algorithms make use of backstepping and tuning functions, and enlarge the class of non‐linear systems with unknown parameters for which asymptotic output tracking can be achieved. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a simple adaptive multi‐periodic repetitive control scheme when the MIMO LTI plant is not necessarily positive real (PR), however it is strictly minimum‐phase, the spectrum of high‐frequency gain matrix CB is symmetric and lies in the open right/left half complex plane(sign/spectrum definite). The non‐identifier‐based direct adaptive control technique, which does not need plant parameter information, is used to construct adaptive schemes and the system stability is analysed by Lyapunov second method. The extension to plant under certain non‐linear perturbations and an exponential stability scheme are also discussed. Finally, an adaptive proportional plus multi‐periodic repetitive control scheme is proposed. The theoretical findings are supported with simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the global adaptive finite‐time stabilization of a class of switched nonlinear systems, whose subsystems are all in p (p≤1) normal form with unknown control coefficients and parametric uncertainties. The restrictions on the power orders and the nonlinear perturbations are relaxed. By using the parameter separation technique, the uncertain parameters are separated from nonlinear functions. A systematic design procedure for a common state feedback controller and a switching adaptive law is presented by employing the backstepping methodology. It is proved that the closed‐loop system is finite‐time stable under arbitrary switching by utilizing the common Lyapunov function. Finally, with the application to finite‐time control of chemical reactor systems, the effectiveness of the proposed method is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Non‐negative and compartmental dynamical system models are composed of homogeneous interconnected subsystems or compartments which exchange variable non‐negative quantities of material with conservation laws describing transfer, accumulation, and elimination between the compartments and the environment. These models are widespread in biological and physiological sciences and play a key role in understanding these processes. In this paper, we develop a direct adaptive control framework for linear uncertain non‐negative and compartmental systems. The proposed framework is Lyapunov‐based and guarantees partial asymptotic set‐point regulation; that is, asymptotic set‐point stability with respect to part of the closed‐loop system states associated with the plant. In addition, the adaptive controller guarantees that the physical system states remain in the non‐negative orthant of the state space. Finally, a numerical example involving the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for non‐cardiac surgery is provided to demonstrate the efficacy of the proposed approach. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the proofs of robust stability of a discrete‐time robust model reference controller combined with variable structure in an adaptive framework. All the proofs of robust stability are derived for the discrete‐time case and are similar to those already existing for the conventional non‐combined case. The controller is applied to a SISO LTI plant with unmodeled dynamics of multiplicative and additive types. It is shown that the combined controller can arbitrarily improve the convergence of the error while maintaining the robustness if compared with the non–combined case. Simulation results illustrate the performance of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a conceptually simple robustification approach for the adaptive control of a class of non‐linear systems with static and dynamic uncertainties. This approach generates a new class of robust adaptive non‐linear controllers and is based upon a combined application of the well‐known adaptive backstepping and recent non‐linear small‐gain techniques. The presented method is illustrated via a third‐ order chemical reactor with only temperature information, and under relaxed conditions. An adaptive output‐feedback stabilizer is obtained without resorting to any state observer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号