首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

3.
High‐performance organic transistor memory elements with donor‐polymer blends as buffer layers are presented. These organic memory transistors have steep flanks of hysteresis with an ON/OFF memory ratio of up to 2 × 104, and a retention time in excess of 24 h. Inexpensive materials such as poly(methyl methacrylate), ferrocene and copper phthalocyanine are used for the device fabrication, providing a convenient approach of producing organic memory transistors at low cost and high efficiency.  相似文献   

4.
A molecular nano‐floating gate (NFG) of pentacene‐based transistor memory devices is developed using conjugated polymer nanoparticles (CPN) as the discrete trapping sites embedded in an insulating polymer, poly (methacrylic acid) (PMAA). The nanoparticles of polyfluorene (PF) and poly(fluorene‐alt‐benzo[2,1,3]thiadiazole (PFBT) with average diameters of around 50–70 nm are used as charge‐trapping sites, while hydrophilic PMAA serves as a matrix and a tunneling layer. By inserting PF nanoparticles as the floating gate, the transistor memory device reveals a controllable threshold voltage shift, indicating effectively electron‐trapping by the PF CPN. The electron‐storage capability can be further improved using the PFBT‐based NFG since their lower unoccupied molecular orbital level is beneficial for stabilization of the trapped charges, leading a large memory window (35 V), retention time longer than 104 s with a high ON/OFF ratio of >104. In addition, the memory device performance using conjugated polymer nanoparticle NFG is much higher than that of the corresponding polymer blend thin films of PF/polystyrene. It suggests that the discrete polymer nanoparticles can be effectively covered by the tunneling layer, PMAA, to achieve the superior memory characteristics.  相似文献   

5.
Oligoarenes as an alternative group of promising semiconductors in organic optoelectronics have attracted much attention. However, high‐performance and low‐cost opto‐electrical devices based on linear asymmetric oligoarenes with nano/microstructures are still rarely studied because of difficulties both in synthesis and high‐quality nano/microstructure growth. Here, a novel linear asymmetric oligoarene 6‐methyl‐anthra[2,3‐b]benzo[d]thiophene (Me‐ABT) is synthesized and its high‐quality microribbons are grown by a solution process. The solution of Me‐ABT exhibits a moderate fluorescence quantum yield of 0.34, while the microribbons show a glaucous light emission. Phototransistors based on an individual Me‐ABT microribbon prepared by a solution‐phase self‐assembly process showed a high mobility of 1.66 cm2 V?1 s?1, a large photoresponsivity of 12 000 A W?1, and a photocurrent/dark‐current ratio of 6000 even under low light power conditions (30 µW cm?2). The measured photoresponsivity of the devices is much higher than that of inorganic single‐crystal silicon thin film transistors. These studies should boost the development of the organic semiconductors with high‐quality microstructures for potential application in organic optoelectronics.  相似文献   

6.
Organic nonvolatile transistor‐type memory (ONVM) devices are developed using self‐assembled nanowires of n‐type semiconductor, N,N′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI). The effects of nanowire dimension and silane surface treatment on the memory characteristics are explored. The diameter of the nanowires is reduced by increasing the non‐solvent methanol composition, which led to the enhanced crystallinity and high field‐effect mobility. The BPE‐PTCDI nanowires with small diameters induce high electrical fields and result in a large memory window (the shifting of the threshold voltage, ΔVth). The ΔVth value of BPE‐PTCDI nanowire based ONVM device on the bare substrate can reach 51 V, which is significantly larger than that of thin film. The memory window is further enhanced to 78 V with the on/off ratio of 2.1 × 104 and the long retention time (104 s), using a hydrophobic surface (such as trichloro(phenyl)silane‐treated surface). The above results demonstrate that the n‐type semiconducting nanowires have potential applications in high performance non‐volatile transistor memory devices.  相似文献   

7.
Nanoscale fabrication of smart materials relying on the molecular self‐assembly of block copolymers (BCPs) has been recognized as a valuable platform for various next‐generation functional structures. In this Progress Report, the recent advances in the BCP self‐assembly process, which has paved the way for viable applications of emerging nanotechnologies, are highlighted. Effective light‐induced self‐assembly based on photothermal annealing of high‐χ BCPs and conformal 3D surface nanopatterning exploiting chemically modified graphene flexible substrates are reviewed as the typical instances of advanced BCP‐based nanofabrication methodologies. Additionally, relevant potential application fields are suggested, namely, graphene nanoribbon field effect transistors, highly tunable refractive index metasurfaces for visible light, high‐sensitivity surface‐enhanced Raman spectroscopy, 2D transition metal dichalcogenide nanopatterning, sequential infiltration synthesis, and organic photovoltaics. Finally, the future research direction as well as innovative applications of these smart nanostructured materials is proposed.  相似文献   

8.
9.
With the incorporation of tailorable organic electronic materials as channel and storage materials, organic field‐effect transistor (OFET)‐based memory has become one of the most promising data storage technologies for hosting a variety of emerging memory applications, such as sensory memory, storage memory, and neuromorphic computing. Here, the recent state‐of‐the‐art progresses in the use of small molecules for OFET nonvolatile memory and artificial synapses are comprehensively reviewed, focusing on the characteristic features of small molecules in versatile functional roles (channel, storage, modifier, and dopant). Techniques for optimizing the storage capacity, speed, and reliability of nonvolatile memory devices are addressed in detail. Insight into the use of small molecules in artificial synapses constructed on OFET memory is also obtained in this emerging field. Finally, the strategies of molecular design for improving memory performance in view of small molecules as storage mediums are discussed systematically, and challenges are addressed to shed light on the future development of this vital research field.  相似文献   

10.
Next‐generation lithography techniques based on the self‐assembly of block copolymers (BCPs) are promising methods for high‐resolution pattering. BCPs with a high incompatibility (high‐χ), such as polystyrene‐polydimethylsiloxane (PS‐PDMS), show encouraging results in terms of resolution. In the strong segregation regime, the high diffusive energy barrier of PS‐PDMS excessively reduces the self‐assembly kinetics; this is why solvent–vapor annealing is typically adopted to shorten the self‐assembly time. Plasticizers are generally used to reduce the glass transition temperature (Tg) of polymers. In this study, commercial plasticizers such as dioctylsebacate and diisooctyl adipate are blended with PS‐PDMS polymers, and their influence on the self‐assembly process is investigated. The intrinsic PS selectivity of the plasticizers brings the BCP to form PS‐PDMS micelles, which results in highly ordered self‐assembled body‐centered cubic spherical PS‐PDMS after spin‐coating without any annealing. The negligible vapor pressure of plasticizers and the decrease of Tg allow the high mobility of PS‐PDMS micelles in thin films. A transition into a stable horizontal cylindrical morphology is then possible by ultrafast thermal annealing (30 s). The complete process, from the BCP deposition to the final pattern transfer into Si, is presented on 300 mm standard wafers, which makes this method promising for microelectronic industrial integration.  相似文献   

11.
Block copolymer lithography exploiting diblock copolymer thin films is promising for scalable manufacture of device‐oriented nanostructures. Nonetheless, its intrinsic limitation in the degree of freedom for pattern symmetry within hexagonal dot or parallel line array greatly diminishes the potential application fields. Here, we report multi‐level hierarchical self‐assembled nanopatterning of diblock copolymers for modified pattern symmetry. Sequential hierarchical integration of two layers of diblock copolymer films with judiciously chosen molecular weights and chemical composition creates nanopatterned morphology with modified pattern symmetry, including sparse linear cylinder or lamellar arrays. Internal structure of the hierarchically patterned morphology is characterized by grazing‐incidence small‐angle X‐ray scattering throughout the film thickness. Pattern transfer of the modified nanopattern generates linear metal nanodot array with uniform size and regular spacing as a typical example of functional nanopatterned structures.  相似文献   

12.
A novel combination of block copolymer (BCP) nano spray‐drying (NSD), solvent annealing, and selective metal oxide growth is utilized to create functional polymer nanoparticles, polymer‐metal‐oxide hybrid nanoparticles, and templated metal oxide nanoparticles with tunable composition, internal morphology, and porosity. NSD of BCPs from chloroform and toluene solutions results in porous and nonporous nanoparticles, respectively, with various degrees of phase separation. Further tuning of the nanoparticle internal morphology is performed by solvent annealing the spray‐dried particles with judicious choice of the nonsolvent dispersion medium and the surfactant, yielding assembly of both blocks at the surface of the nanoparticles. Finally, ZnO and Al2O3 are grown inside the polar blocks of phase‐ordered nanoparticles using a sequential infiltration synthesis method, in a post‐assembly process, resulting in hybrid BCP‐ZnO particles and BCP‐templated Al2O3 nanoparticles, as demonstrated by scanning transmission electron microscopy tomography. These structure engineering methods open new ways to direct and template functional nanoparticles.  相似文献   

13.
It is discovered that the memory‐type behaviors of novel carbohydrate‐block ‐polyisoprene (MH‐b ‐PI) block copolymers‐based devices, including write‐once‐read‐many‐times, Flash, and dynamic‐random‐access‐memory, can be easily controlled by the self‐assembly nanostructures (vertical cylinder, horizontal cylinder, and order‐packed sphere), in which the MH and PI blocks, respectively, provide the charge‐trapping and stretchable function. With increasing the flexible PI block length, the stretchability of the designed copolymers can be significantly improved up to 100% without forming cracks. Thus, intrinsically stretchable resistive memory devices (polydimethylsiloxane(PDMS)/carbon nanotubes(CNTs)/MH‐b ‐PI thin film/Al) using the MH‐b ‐PI thin film as an active layer is successfully fabricated and that using the MH‐b ‐PI12.6k under 100% strain exhibits an excellent ON/OFF current ratio of over 106 (reading at ?1 V) with stable V set around ?2 V. Furthermore, the endurance characteristics can be maintained over 500 cycles upon 40% strain. This work establishes and represents a novel avenue for the design of green carbohydrate‐derived and stretchable memory materials.  相似文献   

14.
There is considerable interest in developing functional protein arrays on the nanoscale for high‐throughput protein‐based array technology, and for the study of biomolecular and cell interactions at the physical scale of the biomolecules. To these ends, self‐assembly based techniques may be desirable for the nanopatterning of proteins on large sample areas without the use of lithography equipment. We present a fast, general approach for patterning proteins (and potentially other biomolecules) on the nanoscale, which takes advantage of the ability of block copolymers to self‐assemble into ordered surface nanopatterns with defined chemical heterogeneity. We demonstrate nanoarrays of immunoglobulin and bovine serum albumin on polystyrene‐block‐poly(methyl methacrylate) templates, and illustrate the applicability of our technique through immunoassays and DNA sensing performed on the protein nanoarrays. Furthermore, we show that the pattern formation mechanism is a nanoscale effect originating from a combination of fluid flow forces and geometric restrictions templated by an underlying nanopattern with a difference in protein adsorption behavior on adjacent, chemically distinct surfaces. This understanding may provide a framework for extending the patterning approach to other proteins and material systems.  相似文献   

15.
The precisely controllable self‐assembly phenomenon of block copolymers (BCPs) has garnered much attention because it yields well‐defined periodic nanostructures with a periodicity of 5–50 nm. However, from both thermodynamic and kinetic viewpoints, it still remains a challenge to develop a BCP material that can provide sub‐10 nm resolution, high pattern quality, fast pattern formation, and sufficient etch selectivity. To address these challenges, this study reports a BCP system containing a random‐copolymerized block (poly(2‐vinylpyridine‐co‐4‐vinylpyridne)‐b‐poly(dimethylsiloxane) (P(2VP‐co‐4VP)‐b‐PDMS)) that can provide sub‐6 nm resolution, 3σ line edge roughness of 0.89 nm, sub‐1‐min assembly time, and a high etch selectivity over 10. Calculation of the Flory–Huggins interaction parameter (χ) based on Leibler's mean‐field theory and small‐angle X‐ray scattering measurement data confirms the gradual tunability of χ with the controlled addition of 4VP fraction in the P(2VP‐co‐4VP) block. While guaranteeing kinetically fast self‐assembly within one minute using microwave annealing, the best pattern quality resulting from the thermodynamic suppression of line edge fluctuation is achieved with a 4VP weight fraction of 33% in the random‐copolymerized block. This approach enables systematical control of sub‐6 nm scale BCP self‐assembly and will provide a practical patterning solution for diverse nanostructures and devices.  相似文献   

16.
Organic non‐volatile memory (ONVM) based on pentacene field‐effect transistors (FETs) has been fabricated using various chargeable thin polymer gate dielectrics—termed electrets—onto silicon oxide insulating layers. The overall transfer curve of organic FETs is significantly shifted in both positive and negative directions and the shifts in threshold voltage (VTh) can be systemically and reversibly controlled via relatively brief application of the appropriate external gate bias. The shifted transfer curve is stable for a relatively long time—more than 105 s. However, this significant reversible shift in VTh is evident only in OFETs with non‐polar and hydrophobic polymer electret layers. Moreover, the magnitude of the memory window in this device is inversely proportional to the hydrophilicity (determined from the water contact angle) and dielectric polarity (determined from the dielectric constant), respectively. Memory behaviors of ONVM originate from charge storage in polymer gate electret layers. Therefore, the small shifts in VTh in ONVM with hydrophilic and polar polymers may be due to very rapid dissipation of transferred charges through the conductive channels which form from dipoles, residual moisture, or ions in the polymer electret layers. It is verified that the surface or bulk conductivities of polymer gate electret layers played a critical role in determining the non‐volatile memory properties.  相似文献   

17.
Poly(2,5‐Bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophenes (pBTTTs) are a new class of solution‐processable polymer semiconductors with high charge carrier mobilities that rival amorphous silicon. This exceptional performance is thought to originate in the microstructure of pBTTT films, which exhibit high crystallinity and a surface topography of wide terraces. However, the true lateral grain size has not been determined, despite the critical impact grain boundaries can have on the charge transport of polymer semiconductors. Here a strategy for determining the lateral grain structure of pBTTT using dark‐field transmission electron microscopy (DF‐TEM) and subsequent image analysis is presented. For the first time, it is revealed that the in‐plain pBTTT crystal orientation varies smoothly across a length scale significantly less than one micrometer (e.g., with only small angles between adjacent diffracting regions). The pBTTT polymers thus exhibit an in‐plane liquid crystalline texture. This microstructure is different from what has been reported for small molecule semiconductors or polymer semiconductors such as poly(3‐hexyl thiophene) (P3HT). Even though films processed differently exhibit different apparent domain sizes, they exhibit similar charge carrier hopping activation energies because they possess similar low densities of abrupt grain boundaries.  相似文献   

18.
Silsesquioxane polymers have been successfully used as the dielectric layer in organic field‐effect transistors (FETs) deposited on robust, plastic substrates. Performance comparable to that found with silicon substrates having SiO2 as the active dielectric layer was observed with six p‐ and n‐ channel organic semiconductors. These organopolysiloxane materials can be deposited using conventional liquid coating technologies and are compatible with non‐photolithographic microcontact printing. Their low curing temperature permits the use of a variety of low‐cost plastic materials as substrates in FET devices. These findings have facilitated the realization of low‐cost, large area plastic electronics.  相似文献   

19.
20.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号