首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies of enclosed turbulent flows within rotating discs or cylinders (e.g. [6, 7]) have revealed that, while the geometry may be strictly axisymmetric, it is possible for non-axisymmetric flow patterns to be created within the space. Here we report a visualization study off low induced in the cavity formed between two discs, one rotating, the other stationary. This is an idealization of the flow configuration that occurs between successive stages in the `hot section' of a gas turbine. Such rotor-stator cavities have hitherto been regarded as creating asymmetric flow pattern but Owen [8] has conjectured that the failure to predict heat transfer coefficients accurately for certain radius-to-height ratios may indicate that here, too, organized rotating vortex structures were playing a crucial role. The present study has made an experimental visualization of this flow over a range of conditions in order to test this conjecture and to help guide future numerical explorations. The apparatus comprised a rotating disc over which is fitted a Perspex stationary disc and shroud. The lower disc was rotated for a number of distinct speeds between 30 and 120 rpm and for two ratios of gap-height to radius (H/R). The spin Reynolds number based on gap height and maximum rotational speed, ρΩRh/μ, ranged from 3.7 × 10E4 to 2.24 × 10E5. The flow structures were visualized by injecting ink through a small hypodermic tube at various radii and depths within the cavity and recording the ensuing dye streaks with a video camera mounted above the discs. The results show that, for a wide range of conditions,structured flow with large-scale vortices does indeed arise, the number of vortices diminishing as the spin Reynolds number is increased. The two-vortex S-shaped pattern is stable over a wide range of conditions but three, five and seven vortices have also been observed. These results suggest that an accurate numerical simulation of the flow within rotor-stator disc cavities may require unsteady,three-dimensional CFD modelling over at least certain ranges of flow parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We investigate a sequence of low-dimensional models of turbulent channel flows. These models are based on the extraction of the Karhunen–Loève (KL) eigenfunctions from a large-scale simulation in a wide channel with R *=180 (based on the friction velocity). KL eigenfunctions provide an optimal coordinate system in which to represent the dynamics of the turbulent flow. The hierarchy of KL modes identifies the most energetic independent phenomena in the system. A series of Galerkin projections is then used to derive a dynamical approximation to flows. In order to capture essential aspects of the flow in a low-dimensional system, a careful selection of modes is carried out. The resulting models satisfy momentum and energy conservation as well as yielding the amount of viscous dissipation found in the exact system. Their dynamics includes modes which characterize the flux, rolls, and propagating waves. Unlike previous treatments the instantaneous streamwise flow is time dependent and represented by KL flux modes. The rolls correspond to the streaks observed in experiments in the viscous sublayer. Propagating waves which first appear in the model flow at low Reynolds number (R *∼ 60) persist through the chaotic regime that appears as the Reynolds number is increased. Statistical measures of the chaotic flows which have been generated by the models compare favorably with those found in full-scale simulations. Received 13 July 1998 and accepted 8 January 1999  相似文献   

3.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Pulsatile flows in the vicinity of mechanical ring-type constrictions in pipes were studied for transitional turbulent flow with a Reynolds number (Re) of the order of 104. The Womersley number (Nw) is in the range 30–50, with a corresponding Strouhal number (St) range of 0·0143–0·0398. The pulsatile flows considered are a pure sinusoidal flow, a physiological flow and an experimental pulsatile flow profile for mechanical aortic valve flow simulations. Transitional laminar and turbulent flow characteristics in an alternating manner within the pulsatile flow fields were studied numerically. It was observed that fluid accelerations tend to suppress the development of flow disturbances. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity and turbulent shear stress are smaller during the acceleration phase than during the deceleration period. Various parametric equations have been formulated through numerical experimentation to better describe the relationships between the instantaneous flow rate (Q), the pressure loss (ΔP), the maximum velocity (Vmax), the maximum vorticity (ζmax), the maximum wall vorticity (ζw,max), the maximum shear stress (τmax) and the maximum wall shear stress (τw,max) for turbulent pulsatile flow in the vicinity of constrictions in the vascular tube. An elliptic relationship has been found to exist between the instantaneous flow rate and the instantaneous pressure gradient. Other linear and quadratic relations between various flow parameters were also obtained.  相似文献   

5.
A numerical investigation is performed for the constant property laminar flow of air in the space between a pair of disks clamped co-axially on a central hub and co-rotating in a stationary cylindrical enclosure. Both two- and three-dimensional flow conditions are examined in relation to the interdisk spacing, H, and the disk angular velocity, Ω. Two interdisk spacings are considered, corresponding to aspect ratios Γ = 0.186 and 0.279 (with Γ = H/(R2+aR), where R2 is the disk radius, a is the disk rim–enclosure wall clearance, and R is the hub radius). A range of rotational speeds encompassing the transition from axisymmetric two-dimensional steady flow to non-axisymmetric three-dimensional unsteady flow are considered for various values of the Reynolds number, Re (with $ Re=\Omega R_2^2/v $, where v is the kinematic viscosity of air). Axisymmetric calculations are first performed for both aspect ratios in the range 3858≤Re≤23 150. Fully three-dimensional calculations are then performed for the configuration with Γ = 0.186 and Re = 23 150, and for the configuration with Γ = 0.279 and Re = 7715, 15 430 and 23 150. The axisymmetric calculations performed with Γ = 0.186 confirm many known features of the flow, including the transition from a steady flow to an oscillatory periodic regime. This occurs at ≈Re = 23 150 for a configuration with a/H = 0, and at ≈Re = 14 670 for one with a/H = 0.28 and a finite disk thickness (b/H = 0.2). Three-dimensional calculations performed for Γ = 0.186 with a/H = 0 and Re = 23 150 reveal a circumferentially periodic flow pattern with eight foci of intensified axial component of vorticity. The axisymmetric calculations performed with Γ = 0.279 and Re > 7715 yield a novel, non-unique steady solution for the velocity field that is asymmetric with respect to the interdisk mid-plane. No experimental verification of this finding exists to date, but similar situations are known to arise in the context of anomalous modes of the Taylor–Couette flow. Relaxing the axisymmetry constraint allows this flow to evolve to an oscillatory three-dimensional regime of increasing irregularity with increasing rotational speed. In this case, the number of foci of intensified axial vorticity varies with time, ranging from six at Re = 7715 to between six and eight at Re = 23 150. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The mechanism of self-sustained oscillations in laminar cavity flows has been well characterized; however, the occurrence of self-sustained oscillations in turbulent cavity flows has only previously been characterized by direct observation of flows. Here, the quantitative characteristics of vortical structures in turbulent flows over an open cavity were determined, and then statistical properties were examined for evidence of self-sustained oscillations. Specifically, instantaneous velocity fields were measured using PIV and wall pressure fluctuations were determined from microphone data. Cavity geometries of L/= 1 and 2, where L and D are the length and depth of the cavity, respectively, were used under conditions where the incoming boundary layer was turbulent at Re θ  = 830. Statistical analyses were applied based on the instantaneous velocity fields of PIV data. The spatial distributions of vertical velocity correlations (v–v) showed alternating patterns that reflect the organized nature of the large-scale vortical structures corresponding to the modes of = 2 for L/= 1 and = 3 for L/= 2. These values were consistent with the numbers of vortical structures obtained from a modified version of Rossiter’s equation. Furthermore the numbers of vortical structures determined in the statistical analyses were consistently observed in instantaneous distributions of the swirling strength (λ ci). The incoming turbulent boundary layer can give rise to the formation of large-scale vortical structures responsible for self-sustained oscillations.  相似文献   

7.
The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high-order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L2-based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence-free H(div)-conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.  相似文献   

8.
Data collected from several studies of experimental and numerical nature in wall-bounded turbulent flows and in particular in internal flows (channel and pipe flows, Mochizuki and Nieuwstadt [1]) at different Reynolds numbers R +(Ru */ν), indicate that: (i) the peak of the rms-value (normalized by u *) of the streamwise velocity fluctuations (σ u +|peak) is essentially independent of the Reynolds number, (ii) the position of the rms peak value (y +|peak) is weakly dependent of the Reynolds number, (iii) the skewness of the streamwise velocity fluctuations (S u ) is close to zero at the position in which the variance has its peak. A series of measurements of streamwise velocity fluctuations has been performed in turbulent pipe flow with the use of an Ultrasonic Doppler Velocimeter and our results support those reported in [1]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effects of pulsatile amplitude on sinusoidal transitional turbulent flows through a rigid pipe in the vicinity of a sharp‐edged mechanical ring‐type constriction have been studied numerically. Pulsatile flows were studied for transitional turbulent flow with Reynolds number (Re) of the order of 104, Womersley number (Nw) of the order of 50 with a corresponding Strouhal number (St) of the order of 0.04. The pulsatile flow considered is a sinusoidal flow with dimensionless amplitudes varying from 0.0 to 1.0. Transitional laminar and turbulent flow characteristics in an alternative manner within the pulsatile flow fields were observed and studied numerically. The flow characteristics were studied through the pulsatile contours of streamlines, vorticity, shear stress and isobars. It was observed that fluid accelerations tend to suppress the development of flow disturbances. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity, turbulent shear stress are smaller during the acceleration phase when compared with those during deceleration period. Various parametric equations within a pulsatile cycle have also been formulated through numerical experimentations with different pulsatile amplitudes. In the vicinity of constrictions, the empirical relationships were obtained for the instantaneous flow rate (Q), the pressure gradient (dp/dz), the pressure loss (Ploss), the maximum velocity (Vmax), the maximum vorticity (ζmax), the maximum wall vorticity (ζw,max), the maximum shear stress (τmax) and the maximum wall shear stress (τw,max). Elliptic relation was observed between flow rate and pressure gradient. Quadratic relations were observed between flow rate and the pressure loss, the maximum values of shear stress, wall shear stress, turbulent kinematic energy and the turbulent viscosity. Linear relationships exist between the instantaneous flow rate and the maximum values of vorticity, wall vorticity and velocity. The time‐average axial pressure gradient and the time average pressure loss across the constriction were observed to increase linearly with the pulsatile amplitude. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A computational study is performed on three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with aspect ratio (AR) of 10:1, oriented 120° from the direction of rotation. The Focus is on high rotation and high-density ratios effects on the heat transfer characteristics of the 120° orientation. The Reynolds stress model (RSM), which accounts for rotational effects are used to compute the turbulent flow and heat transfer in the rotating channel. The effects of rotation and coolant-to-wall density ratio on the fluid flow and heat transfer characteristics is reported on a range of rotation numbers and density ratios (0 < Ro < 0.25 and 0.07 < Δρ/ρ < 0.4). The computational results are in good agreement with experimental data within ±15%. The results show that the density ratio, rotation number and channel orientation significantly affect the flow field and heat transfer characteristics in the rotating rectangular channel. Flow reversal occurs at high rotation number and density ratio.  相似文献   

11.
A new subgrid scale (SGS) modelling concept for large-eddy simulation (LES) of incompressible flow is proposed based on the three-dimensional spatial velocity increment δ u i . The new model is inspired by the structure function formulation developed by Métais and Lesieur [39] and applied in the context of the scale similarity type formulation. First, the similarity between the SGS stress tensor τ ij and the velocity increment tensor Q ij = δ u i δ u j is analyzed analytically and numerically using a priori tests of fully developed pipe flow at Re τ = 180. Both forward and backward energy transfers between resolved and unresolved scales of the flow are well predicted with a SGS model based on Q ij . Secondly, a posteriori tests are performed for two families of turbulent shear flows. LES of fully developed pipe flow up to Re τ = 520 and LES of round turbulent jet at Re D = 25000 carried out with a dynamic version of the model provide promising results that confirm the power of this approach for wall-bounded and free shear flows.  相似文献   

12.
The direct numerical simulation (DNS) of the Taylor–Couette flow in the fully turbulent regime is described. The numerical method extends the work by Quadrio and Luchini [M. Quadrio, P. Luchini, Eur. J. Mech. B/Fluids 21 (2002) 413–427], and is based on a parallel computer code which uses mixed spatial discretization (spectral schemes in the homogeneous directions, and fourth-order, compact explicit finite-difference schemes in the radial direction). A DNS is carried out to simulate for the first time the turbulent Taylor–Couette flow in the turbulent regime. Statistical quantities are computed to complement the existing experimental information, with a view to compare it to planar, pressure-driven turbulent flow at the same value of the Reynolds number. The main source for differences in flow statistics between plane and curved-wall flows is attributed to the presence of large-scale rotating structures generated by curvature effects.  相似文献   

13.
This paper reports a numerical study of double diffusive natural convection in a vertical porous enclosure with localized heating and salting from one side. The physical model for the momentum conservation equation makes use of the Darcy equation, and the set of coupled equations is solved using the finite-volume methodology together with the deferred central difference scheme. An extensive series of numerical simulations is conducted in the range of −10 ⩽ N ⩽ + 10, 0 ⩽ R t ⩽ 200, 10−2Le ⩽ 200, and 0.125 ⩽ L ⩽ 0.875, where N, R t , Le, and L are the buoyancy ratio, Darcy-modified thermal Rayleigh number, Lewis number, and the segment location. Streamlines, heatlines, masslines, isotherms, and iso-concentrations are produced for several segment locations to illustrate the flow structure transition from solutal-dominated opposing to thermal dominated and solutal-dominated aiding flows, respectively. The segment location combining with thermal Rayleigh number and Lewis number is found to influence the buoyancy ratio at which flow transition and flow reversal occurs. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting segment.  相似文献   

14.
For flows with wall turbulence the hole pressure, P H , was shown empirically by Franklin and Wallace (J Fluid Mech, 42, 33–48, 1970) to depend solely on R +, the Reynolds number constructed from the friction velocity and the hole diameter b. Here this dependence is extended to the laminar regime by numerical simulation of a Newtonian fluid flowing in a plane channel (gap H) with a deep tap hole on one wall. Calculated hole pressures are in good agreement with experimental values, and for two hole sizes are well represented by: (P H P HS )/τ w = √(k 2 + c 2 R +2)−k, where the Stokes hole pressure P HS w s (b/H)3, k, c, s are fitted constants, and τ w is the wall shear stress.  相似文献   

15.
Linear theory is applied to examine rotation and buoyancy effects on homogeneous turbulent shear flows with given vertical velocity shear, S=d/dx 3. In the rotating shear case (where the rotation vector is perpendicular to the plane of the mean flow, Ω i =Ωδ i 2), general solutions for the Fourier components of the fluctuating velocity are proposed. These solutions are compared with those proposed in the literature for the Fourier components of the fluctuating velocity and density in the case of a homogeneous stratified shear flow with vertical density gradient, S ρ=d/dx 3. It is shown that from the normal mode stability stand point the Bradshaw parameter B=2Ω/S(1+2Ω/S) (in the rotating shear case) and the Richardson number R i (in the statified shear case) play similar roles in identifying the stability for all the wave components except in the case where Ω·k=0, for which rotation has no effects on the flow. Analysis of the long-time behavior of the non-dimensional spectral density of energy, e g , is carried out. In the stable case, e g has decaying oscillations or undergoes a power law decay in time. Analytical solutions for the streamwise two-dimensional energy ℰ ii 1/2 (i.e. the limit at k 1=0 of the one-dimensional energy spectra) are proposed. At large time, ℰ ii 1(t)/ℰ ii 1(0) oscillates around the value (3R i +1)/(4R i ) except at R i =1 it stays constant in time. Similar behavior for ℰ ii 1(t)/ℰ ii 1(0) is also observed in the rotating shear case (ℰ ii 1(t)/ℰ ii 1(0) oscillates around the value (1+4B)/(4B)). Due to the behavior of the dimensionless spectral density of energy in both flow cases, the turbulent kinetic energy, /2, the production rate, ?, and the rate due to the buoyancy forces, ℬ, are split into two parts, , ?=?1+?2, ℬ=ℬ1+ℬ2 (in the stratified shear case, both ?1 and ℬ1 vanish when R i >?, while in the rotating shear case one has ℬ=0). It is shown that when rotation is “cyclonic” (i.e. Ω/S>0), part reaches maximum magnitudes at St ≈2, independent of the B value, and the first time to a zero crossing of ?2 occurs at this particular value. When rotation is “anticyclonic” (i.e. Ω/S<0) one finds St ≈1.6 instead of St ≈2. In the stratified shear case, both ?2 and ℬ2 cross zero at Nt=St ≈2, and part reaches maximum magnitudes at this particular value. These results and in particular those for the turbulent kinetic energy are compared with previous direct numerical simulation (DNS) results in homogeneous stratified shear flows. Received 30 July 2001 and accepted 19 February 2002  相似文献   

16.
Large-eddy simulations (LES) of a planar, asymmetric diffuser flow have been performed. The diverging angle of the inclined wall of the diffuser is chosen as 8.5°, a case for which recent experimental data are available. Reasonable agreement between the LES and the experiments is obtained. The numerical method is further validated for diffuser flow with the diffuser wall inclined at a diverging angle of 10°, which has served as a test case for a number of experimental as well as numerical studies in the literature (LES, RANS). For the present results, the subgrid-scale stresses have been closed using the dynamic Smagorinsky model. A resolution study has been performed, highlighting the disparity of the relevant temporal and spatial scales and thus the sensitivity of the simulation results to the specific numerical grids used. The effect of different Reynolds numbers of the inflowing, fully turbulent channel flow has been studied, in particular, Re b  = 4,500, Re b  = 9,000 and Re b  = 20,000 with Re b being the Reynolds number based on the bulk velocity and channel half width. The results consistently show that by increasing the Reynolds number a clear trend towards a larger separated region is evident; at least for the studied, comparably low Reynolds-number regime. It is further shown that the small separated region occurring at the diffuser throat shows the opposite behaviour as the main separation region, i.e. the flow is separating less with higher Re b . Moreover, the influence of the Reynolds number on the internal layer occurring at the non-inclined wall described in a recent study has also been assessed. It can be concluded that this region close to the upper, straight wall, is more distinct for larger Re b . Additionally, the influence of temporal correlations arising from the commonly used periodic turbulent channel flow as inflow condition (similar to a precursor simulation) for the diffuser is assessed.  相似文献   

17.
In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under‐resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high‐order spectral methods by using high‐order ansatz functions up to 12th order. We employ polynomial de‐aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high‐order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

20.
A cost‐effective method to generate inflow conditions for direct numerical simulations of wall‐bounded flows is presented. The method recycles a finite‐length time series of instantaneous velocity planes extracted from a precursor simulation and has earlier proved efficient for free shear layers. Now a spatially developing plane channel flow is considered. Different durations ts of the time series are tested and compared. Excellent agreement with fully developed channel flow statistics is observed when ts equals or exceeds the large‐eddy turnover time scale. The present results are more realistic than those obtained with synthetic turbulence generation and at the same time substantially cheaper than running an auxiliary simulation in parallel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号