首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction activities of several developed catalysts for NO oxidation and NOx (NO + NO2) reduction have been determined in a fixed bed differential reactor. Among all the catalysts tested, Co3O4 based catalysts are the most active ones for both NO oxidation and NOx reduction reactions even at high space velocity (SV) and low temperature in the fast selective catalytic reduction (SCR) process. Over Co3O4 catalyst, the effects of calcination temperatures, SO2 concentration, optimum SV for 50% conversion of NO to NO2 were determined. Also, Co3O4 based catalysts (Co3O4-WO3) exhibit significantly higher conversion than all the developed DeNOx catalysts (supported/unsupported) having maximum conversion of NOx even at lower temperature and higher SV since the mixed oxide Co-W nanocomposite is formed. In case of the fast SCR, N2O formation over Co3O4-WO3 catalyst is far less than that over the other catalysts but the standard SCR produces high concentration of N2O over all the catalysts. The effect of SO2 concentration on NOx reduction is found to be almost negligible may be due to the presence of WO3 that resists SO2 oxidation.  相似文献   

2.
CO and CH4 combined oxidation tests were performed over a Pd (70 g/ft3)/Co3O4 monolithic catalyst in conditions of GHSV = 100,000 h−1 and feed composition close to that of emission from bi-fuel vehicles. The effect of SO2 (5 ppm) on CO and CH4 oxidation activity under lean condition (λ = 2) was investigated. The presence of sulphur strongly deactivated the catalyst towards methane oxidation, while the poisoning effect was less drastic in the oxidation of CO. Saturation of the Pd/Co3O4 catalytic sites via chemisorbed SO3 and/or sulphates occurred upon exposure to SO2. A treatment of regeneration to remove sulphate species was attempted by performing a heating/cooling cycle up to 900 °C in oxidizing atmosphere. Decomposition of PdO and Co3O4 phases at high temperature, above 750 °C, was observed. Moreover, sintering of Pd0 and PdO particles along with of CoO crystallites takes place.  相似文献   

3.
以Co(NO_3)_2·6H_2O和CO(NH_2)_2为原料,十六烷基三甲基溴化铵为活性剂,采用水热-热分解法在不同加热时间(2 h、3 h、4 h、5 h)条件下制备纯相尖晶石结构的Co_3O_4颗粒。利用X射线衍射和电子扫描电镜研究Co_3O_4颗粒的结构和形貌,并以甲基橙为模拟废水,研究加热时间对Co_3O_4颗粒光催化性能的影响。结果表明,加热时间对Co_3O_4颗粒形貌影响很大,并直接影响其光催化性能。加热时间5 h制备的Co_3O_4结构疏松多孔,光催化性能最好,光照20 min,甲基橙降解率达95%。  相似文献   

4.
通过水热法制备了具有可见光增产氢高性能的g-C_3N_4/Co_3O_4胶体催化剂,采用XRD、TEM、SEM和EDS等分析样品的组成和形貌结构。催化产氢结果表明,光照条件下g-C_3N_4/Co_3O_4胶体催化剂具有极高的催化产氢活性,TOF值高达58.2 min~(-1),通过拟合温度动力学曲线,得到了催化反应的活化能为15.73 kJ·mol~(-1)。对样品进行UV-vis和PL测试发现,g-C_3N_4/Co_3O_4胶体催化剂具有极高的光能利用率和电子-空穴分离率,并进一步阐述了光能促进催化产氢的作用机理。  相似文献   

5.
Direct decomposition of nitrous oxide (N2O) on K-doped Co3O4 catalysts was examined. The K-doped Co3O4 catalyst showed a high activity even in the presence of water. In the durability test of the K-doped Co3O4 catalyst, the activity was maintained at least for 12 h. It was found that the activity of the K-doped Co3O4 catalyst strongly depended on the amount of K in the catalyst. In order to reveal the role of the K component on the catalytic activity, the catalyst was characterized by XRD, XPS, TPR and TPD. The results suggested that regeneration of the Co2+ species from the Co3+ species formed by oxidation of Co2+ with the oxygen atoms formed by N2O decomposition was promoted by the addition of K to the Co3O4 catalyst.  相似文献   

6.
秦少立  陈涛  潘枫  李进军 《工业催化》2020,28(4):103-106
金属载体负载型催化剂的电焦耳催化氧化是挥发性有机物控制技术,其核心是向金属载体中通入电流,产生焦耳热来实现负载的催化剂活化。受制于催化剂涂层与金属载体之间较低的黏附力,催化剂在金属表面的负载是技术难点。将Co和Ce电镀到FeCrAl合金表面,焙烧形成氧化物催化剂,并用于丙烷的电焦耳催化氧化。结果表明,对合金载体表面进行阳极氧化预处理,可以有效促进催化剂组分的分散,而且催化剂涂层上有空穴结构,有利于反应过程的传质; CeO_2的存在显著提高Co_3O_4催化剂对丙烷的催化氧化性能。通过进一步优化,电镀法可成为制备金属负载型催化剂的有效方法。  相似文献   

7.
通过焙烧猪骨和鸡骨获得羟磷灰石(nHAP)载体,并采用浸渍法制备Co3O4/nHAP催化剂。采用XRD、N2物理吸附-脱附、FT-IR和H2-TPR等对催化剂进行表征,在连续流动微反装置上考察催化剂催化分解N2O的性能。结果表明,相比于鸡骨源Co3O4/nHAP催化剂,以猪骨源HAP为载体的催化剂因其较大的比表面积以及较小的Co3O4粒径尺寸,提供了更多的活性位点。特别是猪骨源Co3O4/nHAP催化剂中适量的K、Na等元素促进了Co^3+到Co^2+的还原,削弱了Co-O键,使催化剂的催化活性显著提高。  相似文献   

8.
Co3O4 thin film is synthesized on ITO by a chemical bath deposition. The prepared Co3O4 thin film is characterized by X-ray diffraction, and scanning electron microscopy. Electrochemical capacitive behavior of synthesized Co3O4 thin film is investigated by cyclic voltammetry, constant current charge/discharge and electrochemical impedance spectroscopy. Scanning electron microscopy images show that Co3O4 thin film is composed of spherical-like coarse particles, together with some pores among particles. Electrochemical studies reveal that capacitive characteristic of Co3O4 thin film mainly results from pseudocapacitance. Co3O4 thin film exhibits a maximum specific capacitance of 227 F g−1 at the specific current of 0.2 A g−1. The specific capacitance reduces to 152 F g−1 when the specific current increases to 1.4 A g−1. The specific capacitance retention ratio is 67% at the specific current range from 0.2 to 1.4 A g−1.  相似文献   

9.
A novel microwave-assisted hydrothermal route for preparation of Co3O4 nanorods had been developed. The process contained two steps: first, nanorods of cobalt hydroxide carbonate were obtained from a mixed solution of 50 ml of 0.6 M Co(NO3)2·6H2O and 2.4 g of urea under 500 W microwave irradiated for 3 min. Then, the cobalt hydroxide carbonate nanorods were calcined at 400 °C to fabricate pure cobaltic oxide (Co3O4) nanorods. Both nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TG), infrared (IR) and temperature-programmed reduction (TPR). The catalytic activity towards the degradation of phenol over Co3O4 nanorods was further studied under continuous bubbling of air through the liquid phase. The results showed that phenol was degraded into harmless products (CO2 and malonic acid). The mechanism of phenol degradation was also discussed.  相似文献   

10.
11.
The hydroformylation of olefins over supported gold catalysts in an autoclave reactor under mild conditions (100–140 °C, 3–5 MPa) has been studied. Over Au/AC (activated carbon), Au/PVP (polyvinylpyrrolidone), Au/Al2O3, Au/TiO2, Au/Fe2O3, Au/ZnO, Au/CeO2 and Co3O4, 1-olefin mainly remained unchanged and the major products were isomerized olefins or hydrogenated paraffin. In contrast, Au nanoparticles deposited on Co3O4 led to remarkably high catalytic activities in hydroformylation reaction with selectivities above 85% to desired aldehydes. The hydroformylation of olefins proceeds preferentially at temperatures below 140 °C, above which the reactions of olefins gradually shifted to isomerization and then to hydrogenation. It appeared that the activity and selectivity of hydroformylation reaction strongly depend on the molecular structure of olefins, which could be ascribed to steric constraints as internal olefins are relatively inappropriate to form alkyl group and subsequent acyl group by insertion of CO. The Au/Co3O4 catalyst can be recycled by simple decantation with slight decrease in catalytic activity along with an increase in recycle times, which is a great advantage over homogeneous catalysts. The role of gold nanoparticles can be assumed to dissociate hydrogen molecule into atomic species which reduce Co3O4 to Co metal under mild reaction conditions.  相似文献   

12.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

13.
Co3O4–CeO2 type mixed oxide catalyst compositions have been prepared by using co-precipitation method and, their catalytic activity towards diesel particulate matter (PM)/carbon oxidation has been evaluated under both loose and tight contact conditions. These catalysts show excellent catalytic activity for PM/carbon oxidation, despite their low surface area. The activation energy observed for non-catalyzed and catalyzed reactions are 163 kJ/mol and 140 kJ/mol, respectively, which also confirm the catalytic activity of catalyst for carbon/soot oxidation. The promotional effects of an optimum amount of cobalt oxide incorporation in ceria and presence of a small amount of potassium appears to be responsible for the excellent soot oxidation activity of this mixed oxide type material. The catalytic materials show good thermal stability, while their low cost will also add to their potential for practical applications.  相似文献   

14.
A Pt/Al2O3 catalyst prepared by incipient wetness impregnation was used as a diesel oxidation model catalyst and tested in the simultaneous total oxidation of CO and C3H6. Sulphur incorporation by wet impregnation results in deactivation of the Pt/Al2O3 catalyst in both oxidation reactions. Characterization of the catalysts by evolved gas analysis by mass spectrometry (EGA-MS), X-ray diffraction (XRD), isotherm of adsorbed nitrogen, X-ray photoelectron spectroscopy (XPS), infrared spectroscopy of probe molecules (pyridine and carbon monoxide) and finally temperature-programmed surface reaction (O2-TPSR of chemisorbed CO) demonstrated that the formation of aluminium sulphate modifies the acidic properties of the support and the electronic properties of the platinum particles. Thus, new Brønsted acid sites are formed and, moreover, the capacity of the Pt particles to chemisorb CO and O2, the latter as strongly chemisorbed O species, is seriously deteriorated. The alteration of the electronic properties of the particles (they become electronically deficient) is related to the modification of the acidic properties of the support. Treatment of the deactivated catalysts by a reductive treatment at 873 K resulted in the removal of the sulphur due to decomposition of the aluminium sulphate. Thus, the original acidic properties of the support and the electronic properties of the Pt particles were largely recovered and a high degree of catalytic reactivation was achieved.  相似文献   

15.
During the reactions related to oxidative steam reforming and combustion of methane over -alumina-supported Ni catalysts, the temperature profiles of the catalyst bed were studied using an infrared (IR) thermograph. IR thermographical images revealed an interesting result: that the temperature at the catalyst bed inlet is much higher under CH4/H2O/O2/Ar = 20/10/20/50 than under CH4/H2O/O2/Ar = 10/0/20/70; the former temperature is comparable to that over noble metal catalysts such as Pt and Pd. Based on the temperature-programmed reduction and oxidation measurements over fresh and used catalysts, the metallic Ni is recognized at the catalyst bed inlet under CH4/H2O/O2/Ar = 20/10/20/50, although it is mainly oxidized to NiAl2O4 under CH4/H2O/O2/Ar = 10/0/20/70. This result indicates that the addition of reforming gas (CH4/H2O = 10/10) to the combustion gas (CH4/O2 = 10/20) can stabilize Ni species in the metallic state even under the presence of oxygen in the gas phase. This would account for its extremely high combustion activity.  相似文献   

16.
Ag/Al2O3 catalysts prepared from boehmite needles (ca. 10 nm×100 nm), which were formed by a hydrolysis of aluminium tri-isopropoxide (AIP), showed good performances for selective catalytic reduction of NOx compared with the previously reported catalysts [N. Aoyama, K. Yoshida, A. Abe, T. Miyadera, Catal. Lett. 43 (1997) 249], especially when ethanol is employed as a reducing agent in the presence of water. Temperature programmed reduction (TPR) study revealed that the Ag species are attractively interacted with the alumina surface and the oxidized Ag species contribute positively for the improvement of the catalytic activity at the temperatures above 750 K. It is concluded that the boehmite needles as a precursor of alumina support are useful to create the catalytically active sites for NOx reduction.  相似文献   

17.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

18.
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C.  相似文献   

19.
The total oxidation of C2H2, C3H6, C3H8, n-C4H8, n-C4H10 and i-C4H10 was studied in a monolithic flow reactor under temperature-programmed mode and highly diluted conditions. The non-catalytic combustion of the investigated hydrocarbons leads to a substantial formation of CO and traces of methane at intermediate temperatures. This drawback was suppressed upon the deposition of a thin layer of Co3O4 on the monolith and all investigated hydrocarbons tend to light off at 250–290 °C. The apparent activation energy was found to exhibit a linear correlation with the C–H bond dissociation energy, indicating that the C–H activation is still the rate-limiting step.  相似文献   

20.
The solvothermal reaction of mixtures of aluminum isopropoxide (AIP) and gallium acetylacetonate (Ga(acac)3) directly yielded the mixed oxides of γ-Ga2O3-Al2O3. In the solvothermal synthesis, the crystal structure of mixed oxides was controlled by the initial formation of γ-Ga2O3 nuclei. The mixed oxides prepared in diethylenetriamine have extremely high activities for selective catalytic reduction (SCR) of NO with methane as a reducing agent. With increasing crystallite size of the spinel structure, the catalytic activity increased. The ratio of the amount of methane consumed by combustion to total methane conversion was proportional to the density of acid sites on the surface of the mixed oxides. The mixed oxide catalysts prepared in diethylenetriamine had lower densities of acid sites and showed a higher methane-efficiency for CH4-SCR than those prepared in other solvents. These catalysts maintained their high activity even when the reaction was carried out under the severe conditions (i.e., high space velocity and low NO concentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号