首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
In This Issue     
《催化学报》2014,(8):1225
封面:稀土是重要的稀有元素,资源有限,稀土催化材料是稀土资源尤其是高丰度轻稀土元素(镧、铈、镨等)重要的应用领域.为了反映稀土催化研究的新进展,推进稀土催化材料的发展,本期邀请了在稀土催化研究中比较活跃的课题组撰写了16篇文章组成稀土催化专刊,其中包括2篇综述、1篇快讯和13篇论文,内容主要涉及环境催化、石油化工和能源化工催化等过程.  相似文献   

2.
海洋是未来人类社会重要的能源宝库, 其中蕴藏了储量庞大且形式多样的能源, 海洋能源与资源的高效转化与获取对实现“双碳目标”具有重要意义. 催化技术是提高能源与资源利用效率和转化速率的关键技术, 对于海洋巨大的资源储量, 其显得更为重要. 单原子催化剂具有优异的可调控性、 高选择性和高活性位点利用率, 与海洋环境相容的单原子催化剂表现出良好的应用潜力. 本文对单原子催化在海洋氢能、 海洋能源转化和海水提铀等海洋能源领域的研究进行了综合评述, 并对单原子催化在海洋能源领域的发展前景进行了展望.  相似文献   

3.
可再生生物质资源的能源化利用能有效缓解能源短缺和环境恶化的双重压力。木质纤维素类生物质原料通过催化转化途径可以转化成为用途广泛的平台化合物,如呋喃类化合物、多元醇和有机酸及其酯类衍生物等。以这些平台化合物为原料,通过基元反应的转化可以制备高附加值的生物质基液体燃料。基于上述背景,本文概述了国内外木质纤维素通过不同催化转化途径制备各种新能源平台化合物的研究进展。目前木质纤维素制备新能源平台化合物的可行途径主要包括液体酸催化、固体酸催化、离子液体催化和多功能材料催化。在介绍这些催化途径的同时,重点讨论了所使用的催化剂,分析了仍然存在的问题和可能的解决措施,同时对今后该领域的研究前景进行了展望。  相似文献   

4.
甲醇催化分解研究进展   总被引:3,自引:0,他引:3  
出于对环境和能源的双重考虑,甲醇催化分解过程越来越受到重视。研究者们进行了大量的研究并取得了显著的进展。本文简要概括该催化过程的研究和进展、存在问题及其发展方向。参考文献56篇。  相似文献   

5.
能源已成为当今世界普遍关注的一个重大问题, 催化科学和技术在可持续发展能源研究中的主导作用受到了越来越广泛的重视. 近年来, 我国广大的科技工作者在能源涉及的催化基础、新催化剂创制和新催化反应过程的开发等领域取得了令世人瞩目的成就. 为了展示该领域的前沿研究成果, 促进学术交流《,催化学报》本期以可持续发展能源研究中的催化科学和技术为题出版专刊, 并以此向长期从事能源相关催化基础和应用研究并取得杰出成就的我刊主编林励吾院士表示敬意, 同时祝贺林先生八十华诞. 本刊编辑部和编委会向部分在相关领域做出卓越工作的专家约稿, 得到了他们的大力支持, 共收到来自这些专家的综述、研究快讯和研究论文 19 篇. 在此, 我们由衷感谢这些作者以及审稿人提供的最新科研成果和对本期专刊的无私帮助.  相似文献   

6.
宋术岩 《应用化学》2022,39(4):511-512
能源与环境是现代社会发展的基础与技术变革的前沿阵地。受“碳达峰,碳中和”伟大目标牵引,清洁能源的安全获取与生态环境的改善治理是我国当下科学发展的重要议题。通过催化不但可以清洁能源的高效制造,还能实现废水、废气和废物的循环利用,是解决现有能源与环境问题的关键。近年来,面向能源和环境的热催化、光催化以及电催化技术取得了长足进步。特别是绿氢生产、燃料电池、温室气体转化利用、污染物降解、航空催化转化器等领域迎来了重大发展机遇,并取得了一些重要原创性突破。  相似文献   

7.
甲烷是燃料或化工生产中最丰富的碳基能源之一,将甲烷转化为液体或固体化学原料将成为全球能源供应的转折点.目前,许多催化此类反应的工作已有大量研究和报道.在这些反应中,甲烷选择性氧化制甲醇被认为是天然气就地价值化的一条有前途的途径.这使得甲烷低温选择性氧化制甲醇技术的发展变得非常迫切,本文综述了CH4的活化和催化转化,指出了针对特定反应的催化剂的发展趋势.讨论了理想条件下甲烷氧化制取甲烷的反应研究以及Au–Pd合金类、ZSM-5类、MOFs类、单原子类等催化剂对甲烷氧化过程的影响及其催化转化机理.最后,对温和条件下催化甲烷氧化制甲醇催化剂未来发展提出了展望和挑战.  相似文献   

8.
世界范围能源短缺和环境恶化的双重压力促使可再生生物质资源的能源化利用成为当前研究的一个重要方向。生物质种类多样,但考虑到粮食安全等因素,其中油脂和木质纤维素适合替代化石资源用于制备液体燃料。本文概述了油脂和木质纤维素通过不同催化转化途径制备液体燃料的一些研究进展。油脂可以通过催化热裂解、加氢和酯交换方法制备生物液体燃料,而木质纤维素制备液体燃料的可行途径包括气化-费托合成、液化-精炼和经历平台化合物的选择性合成。在介绍这些催化途径的同时,特别讨论了其中所使用的催化剂和工艺等方面的研究进展,分析了存在的问题和可能的解决措施,以期能为生物质能源化利用的研究提供参考。  相似文献   

9.
钙钛矿型稀土氧化物价格低廉、结构可控、性质多样,在催化领域有着广阔的应用前景。本文从钙钛矿型稀土氧化物的结构类型、合成方法及电化学催化反应出发,总结了传统高温合成方法、火焰喷雾法、静电纺丝法和脉冲激光沉积法等几种最常用的合成方法,以及提升其氧析出反应(OER),氢析出反应(HER)和氧还原反应(ORR)催化能力的典型有效方法,概述了近年来钙钛矿型稀土氧化物在电解水、金属空气电池和固体氧化物燃料电池等能源转化储存装置的主要研究进展,进而对钙钛矿型稀土氧化物在能源转化储存领域的应用进行了展望。  相似文献   

10.
房东旭  刘智焬  江治 《分子催化》2022,36(5):456-466
微波是一种能量传递方式。与传统电加热相比,微波加热具有加热速度快、热惯性小、选择性加热等特点,因而被视为一种优质的能量来源。微波催化是一种使用微波对反应系统供能,从而推动催化反应进行的化学过程。近年来,许多研究者致力于探索和发展微波催化技术,包括利用微波技术提升化学反应速率、开发具有出色微波吸收能力的催化剂、建立节能环保的微波催化系统等。本文首先介绍了微波的相关理论,讲述了材料对微波的吸收原理;然后从微波催化降解挥发性有机物(Volatile Organic Compounds, VOCs)、微波催化污水处理、微波催化生物质热解和微波催化碳氢化合物转化等方面综述了微波催化在能源环境中的应用;最后对微波催化过程的机理展开了讨论。  相似文献   

11.
纳米碳材料非金属催化的研究进展   总被引:1,自引:0,他引:1  
孙晓岩  王锐  苏党生 《催化学报》2013,34(3):508-523
纳米碳材料直接作为催化剂的非金属碳催化是目前材料科学与催化领域的前沿方向之一.相对于传统金属催化剂,纳米碳材料催化剂具有高效环保、低能耗、耐腐蚀等优点.在烃类转化、化学品合成、能源催化等领域表现出优异的催化性能和发展潜力.综述了近年来纳米碳非金属催化研究的最新进展,主要包括新型纳米碳材料的表面性质、催化特性、反应机理和宏观制备等关键问题,并对纳米碳催化存在的挑战和前景进行了展望.  相似文献   

12.
合成气催化转化直接制备低碳烯烃研究进展   总被引:1,自引:0,他引:1  
合成气直接催化转化制备低碳烯烃是C1化学与化工领域中一个极具挑战性的研究课题,具有流程短、能耗低等优势,已成为非石油路径生产烯烃的新途径。直接转化方式主要包括经由OX-ZEO双功能催化剂直接制低碳烯烃的双功能催化路线以及经由费托反应直接制备低碳烯烃的FTO路线。综述简述了近年来在合成气直接制备低碳烯烃方面的研究进展,重点讨论了低碳烯烃的形成机理、新型催化剂的研发及助剂对其催化性能的影响,并对合成气直接制烯烃的未来进行了展望。  相似文献   

13.
杨玉川  魏莉  金子林 《有机化学》2004,24(6):579-584
温控非水液/液两相催化,是指一类由两种或多种液态有机物组成的催化反应体系,其特点是体系的相态变化可通过温度来调控,即体系在高温时相互混溶呈均相,低温不溶分成两相,催化剂和产物分别处于两相,从而为解决均相催化剂分离难的问题开拓了一个新方向,是液/液两相催化研究领域最引人注目的进展之一.首次以"温控"为主线将氟两相催化作为温控液/液两相催化的一个特定类型纳入"温控非水液/液两相催化"范畴,并与其它通过温度来调控的有机液/液两相和作者提出的温控相分离催化串在一起作一较为详细的评述.  相似文献   

14.
随着工业化的推进,化石能源的消耗产生大量温室气体,其中CH4和CO2占据温室气体排放的98%以上。将CH4和CO2转化为高附加值化学品具有重要的意义,一直受到工业界和学术界广泛关注。传统的热催化甲烷干重整(DRM)可实现将CH4和CO2转化为合成气,但该反应过程受热力学限制,需要很高的能量输入,并且由于反应温度较高,催化剂易发生积碳而失活。绿色环保的光催化技术可以使甲烷干重整反应在温和条件下进行,但是存在太阳光利用率和反应转化率较低等问题。最近光热协同催化受到学术界广泛关注。许多研究结果表明,在相对温和的条件下,光热催化DRM可以获得良好的催化效果,可有效实现太阳能转化为化学能。本文简要介绍近期光热催化甲烷干重整反应的研究进展,总结不同金属催化剂在光热催化甲烷干重整中的应用,同时提出了光热催化甲烷干重整存在的一些挑战及展望。  相似文献   

15.
梁骥  闻雷  成会明  李峰 《电化学》2015,21(6):505
电化学储能材料是电化学储能器件发展及性能提高的关键之一. 碳材料在各种电化学储能体系中都起到了极为重要的作用,特别是近期出现的各类新型碳材料为电化学储能的发展带来了新动力,并展现了广阔的应用前景. 本文综述了碳材料,特别是以碳纳米管和石墨烯为代表的纳米碳材料,在典型电化学储能器件(锂离子/钠离子电池、超级电容器和锂硫电池等)、柔性电化学储能和电化学催化等领域的研究进展,并对碳材料在这些领域的应用前景进行了展望.  相似文献   

16.
在以碳中和为目标的全球共识下,太阳能作为一种取之不竭用之不尽的绿色环保能源被认为是替代传统化石燃料最有潜力的方式。在各种太阳能转换技术中,光热催化不仅可以最大化利用太阳能,在光场和热场双重驱动力作用下,还可以显著提升化学反应速率,引起广泛的研究兴趣。以孤立的单个原子均匀分散在载体上形成的单原子催化剂具有100%原子利用率、优异的催化活性、热稳定性等优势。因此,将单原子催化剂应用于光热催化开始受到越来越多的关注。本综述介绍了光催化、热催化和光热催化的基本原理和特征,同时列举一些典型的例子。随后以不同载体作为分类标准,总结了单原子光热催化应用的前沿研究进展。最后,提出了该催化体系所面临的挑战和未来的发展方向。本文旨在全面了解单原子催化剂在太阳能驱动光热催化领域的研究现状并为未来发展提供可行的建议。  相似文献   

17.
Recently, solar-driven synthesis due to its energy-saving and environmentally friendly advantages has attracted more and more attention, whereas the low solar-to-chemical conversion efficiency significantly hindered its development. New effective options that fully utilize full-band sunlight are urgently needed. Novel photothermal catalysis combined with the advantages of photocatalysis and thermalcatalysis can improve the utilization efficiency of solar energy and lower the reaction temperature, thus becoming a promising technology. This review divides photothermal catalysis into photo-assisted thermalcatalysis, thermal-assisted photocatalysis, and photothermal synergistic catalysis. Furthermore, the catalytic mechanical understanding of how photothermal affects the catalytic property of different applications(e.g., water splitting, CO2/N2 reduction, and environmental treatment) was also summed up and discussed in detail. The discussion ends with unsolved challenges in photothermal catalysis, particularly emphasizing the effect of temperature or sunlight on catalytic performance.  相似文献   

18.
Self-assembly is one of the most used strategies in the controlled synthesis and design of well-organized nanomaterials for various applications in diverse realms namely catalysis, sensors, microelectronics, energy storage, and energy conversion. It is quite common to see reports on the synthesis and design of several self-assembled nanomaterials for the application in the catalysis of various chemical, photochemical, and electrochemical reactions and processes. Nevertheless, a combined overview on the synthetic strategies for self-assembled nanomaterials has not been reported in any form in literature. Owing to the current interest shown and the future significance on the self-assembled nanomaterials, it is highly essential to have such an elaborated review on the progress and perspectives of synthesis of self-assembled nanomaterials and their subsequent application to catalysis of various chemical, photochemical, and electrochemical reactions and processes. In this review, we have highlighted various synthetic methodologies used so far for fabricating the self-assembled nanomaterials that includes Langmuir–Blodgett method, layer-by-layer assembly, amphiphilic (artificial and bio) self-assembly, and template-free approach. Nanomaterials derived from the above mentioned methods in various catalysis reactions are also highlighted in detail with an emphasis on confronts and prospects in the field of materials self-assembling and its concomitant application to catalysis.  相似文献   

19.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well‐dispersed photoactive Cu‐[O]‐Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号