首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
高强混凝土钢板组合剪力墙压弯性能试验研究   总被引:3,自引:0,他引:3  
通过对9片不同形式的高轴压比高强混凝土组合剪力墙试件进行低周往复拟静力试验,研究钢筋混凝土剪力墙、两端暗柱设置型钢剪力墙和中部内藏钢板剪力墙等形式试件在压弯状态下的破坏机理、滞回特性、承载力特性以及变形能力等。试验结果表明,钢板的加入可以大幅提高剪力墙试件的抗弯承载力,当设计轴压比小于0.5时,高强混凝土钢板组合剪力墙的变形能力可以满足设计要求,当设计轴压比超过0.5时,高强混凝土钢板组合剪力墙试件在受弯状态下的变形能力较弱。根据试验结果,提出了高强混凝土钢板组合剪力墙抗弯承载力计算的建议公式。  相似文献   

2.
为研究设置加劲肋的双层钢板-混凝土组合剪力墙的抗震性能,对5个试验轴压比为0.4的模型试件进行了恒轴力下的拟静力试验。通过改变加劲肋、中部钢管混凝土暗柱的布置形式,研究该组合剪力墙在水平反复荷载作用下的破坏机理、滞回性能、变形能力以及耗能能力。试验结果表明:试件破坏时底部墙体钢板均发生了屈曲,呈现典型的压弯破坏特征;试件具有良好的延性和耗能能力;在双层钢板-混凝土组合剪力墙中仅设置纵向加劲肋对承载力提高不明显,仅设置横向加劲肋可以略提高试件的承载力,而双向加劲肋的设置将较明显提高试件的承载力;在双层钢板-混凝土组合剪力墙中部增设钢管混凝土暗柱可以较为明显地改善试件的承载力与延性。  相似文献   

3.
不同配筋形式混凝土剪力墙受剪性能试验研究   总被引:3,自引:0,他引:3  
通过13片高宽比为1.5、轴压比为0.5的不同形式混凝土墙抗震性能试验研究,对比了不同形式剪力墙受剪破坏形态、极限承载力及延性性能。试验表明:截面两端设置型钢、钢管或核芯柱的混凝土墙及墙内设置型钢或钢筋暗斜撑的混凝土墙,可不同程度地提高剪力墙受剪承载力及延性;增加墙体分布筋配筋率也可提高剪力墙受剪承载力,但配筋率过高时,其延性很差。提出了两端设置型钢及墙内设置暗斜撑的混凝土剪力墙受剪承载力设计计算公式,计算结果与试验比较吻合。还提出了剪力墙受剪截面控制条件的建议公式。  相似文献   

4.
为解决钢板组合剪力墙与建筑中的非结构部分连接问题,使钢板组合剪力墙在工程应用中更具有普适性,对一种采用内凹冲压件焊接对拉螺杆为连接件的开孔加劲双钢板组合剪力墙抗震性能进行研究。对9个开孔加劲钢板组合剪力墙进行拟静力试验,分析开孔布置形式、设置暗柱、轴压比等参数对构件承载力、延性、耗能等方面的影响。试验结果表明:开孔加劲钢板组合剪力墙均表现出压弯破坏模式,滞回曲线较为饱满,具有良好的延性和耗能能力;不同的开孔布置形式对墙体的承载力影响较小、对墙体延性影响较大;设置暗柱能够有效提高构件的承载力和延性;当轴压比由0.3增大到0.4,开孔加劲钢板组合剪力墙延性降低,但提高轴压比对其承载力影响不大。在试验研究基础上,对退化三线型恢复力模型进行改进,建立开孔加劲钢板组合剪力墙的骨架曲线和恢复力模型,由此模型得到的骨架曲线、滞回曲线和试验的吻合较好。  相似文献   

5.
对6片一字形型钢高强混凝土短肢剪力墙试件进行低周反复荷载试验,研究不同型钢配置形式、不同轴压比的型钢高强混凝土短肢剪力墙的承载力、滞回特性及破坏机理。试验结果表明:格构式配钢试件和实腹式配钢试件的破坏过程相近,试件内置实腹式钢板较好地抑制了斜裂缝的发展;轴压比对两种配钢形式试件的承载力和延性影响规律一致,即随着轴压比的提高,试件承载力提高而延性下降;格构式配钢试件承载力比实腹式配钢试件略高,但实腹式配钢试件的延性更好。根据试验结果,提出型钢高强混凝土短肢剪力墙承载力计算式,与试验结果对比表明两者吻合较好。  相似文献   

6.
对6片一字形型钢高强混凝土短肢剪力墙试件进行低周反复荷载试验,研究不同型钢配置形式、不同轴压比的型钢高强混凝土短肢剪力墙的承载力、滞回特性及破坏机理。试验结果表明:格构式配钢试件和实腹式配钢试件的破坏过程相近,试件内置实腹式钢板较好地抑制了斜裂缝的发展;轴压比对两种配钢形式试件的承载力和延性影响规律一致,即随着轴压比的提高,试件承载力提高而延性下降;格构式配钢试件承载力比实腹式配钢试件略高,但实腹式配钢试件的延性更好。根据试验结果,提出型钢高强混凝土短肢剪力墙承载力计算式,与试验结果对比表明两者吻合较好。  相似文献   

7.
提出一种设置C形连接件的新型双钢板-混凝土组合剪力墙。为研究此类组合墙的抗震性能,设计并完成了6片高剪跨比双钢板-混凝土组合剪力墙的低周反复水平荷载试验。对试件的破坏现象、承载能力、轴压比、滞回曲线、骨架曲线、变形能力、位移延性系数及耗能能力进行了分析研究。试验结果表明:C形连接件可以有效地限制两侧钢面板的屈曲;在屈服阶段,试件的屈曲主要出现在端柱底部和墙身底部。试件的最终破坏形态为端柱脚部断裂;结构具有较高的承载力。组合墙正截面压弯承载力理论计算值与试验值吻合良好;试件的滞回曲线饱满,具有良好的延性及耗能能力,试件破坏时的平均极限位移角为1/52,位移延性系数为2. 49~3. 55。  相似文献   

8.
带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究   总被引:1,自引:0,他引:1  
为研究带约束拉杆钢板-混凝土组合剪力墙的抗震性能,制作10个钢板之间采用八螺母螺栓连接的钢板-混凝土组合剪力墙试件并对其进行拟静力试验,研究试件的破坏模式、变形能力及耗能能力,得到试件的滞回曲线、承载力、骨架曲线、刚度退化曲线、位移延性系数以及累计耗能曲线等,分析高宽比、约束拉杆间距、钢板厚度、核心混凝土厚度、轴压比及边缘增设型钢对试件抗震性能的影响。结果表明:钢板之间采用八螺母螺栓连接可行,带约束拉杆钢板-混凝土组合剪力墙抗震性能较好,随高宽比降低、约束拉杆间距减小、钢板厚度增大、核心混凝土增厚及边缘增设型钢,其抗震性能增强;端部增设型钢可显著提高试件承载力;减小约束拉杆间距可显著提高试件的延性。  相似文献   

9.
高轴压比钢管混凝土剪力墙抗震性能试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究约束边缘构件内配置圆钢管的钢管混凝土剪力墙的抗震性能、探讨钢管混凝土剪力墙的轴压比限值及其约束边缘构件的配箍要求,完成了6个剪跨比大于2.0的高轴压比钢管混凝土剪力墙试件和1个钢筋混凝土剪力墙试件的拟静力试验。试验结果表明:剪力墙的破坏形态为压弯破坏及底部混凝土压溃而丧失竖向承载能力;钢管混凝土剪力墙的开裂水平力、名义屈服水平力、正截面受弯承载力和变形能力均比相同参数的钢筋混凝土剪力墙大;配置双钢管剪力墙的变形能力大于配置单钢管的剪力墙,约束边缘构件为端柱的剪力墙的变形能力大于约束边缘构件为暗柱的剪力墙;正截面受弯承载力试验值大于计算值。根据试验结果,提出了钢管混凝土剪力墙的设计建议。图9表7参13  相似文献   

10.
为了研究内置型钢桁架高强混凝土中高剪力墙的抗震性能,采用不同的暗柱类型及不同的暗柱和暗支撑型钢配钢率,设计制作了3片1/4缩尺、剪跨比1.8、混凝土强度等级为C70的内置型钢桁架高强混凝土中高剪力墙试件,对其进行水平往复加载试验,比较3片高强混凝土中高剪力墙试件的受力过程、破坏形态、滞回性能、位移延性以及侧向刚度退化特征。试验结果表明:内置型钢桁架高强混凝土中高剪力墙试件的最终破坏形态主要为弯曲型破坏,相比于普通高强混凝土中高剪力墙,其位移延性以及后期侧向刚度退化都有明显改善;增加暗柱型钢配钢率能提高试件的水平承载力,但会降低延性性能;增加暗支撑型钢配钢率能显著改善试件的延性,但承载力变化不明显,说明型钢暗支撑对改善高强混凝土中高剪力墙的抗震性能更为有效。  相似文献   

11.
高轴压比钢骨混凝土剪力墙抗震性能试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究高轴压比钢骨混凝土剪力墙的抗震性能,完成了6片剪跨比为2.43、轴压比试验值为0.33~0.35的钢筋、钢骨和钢管混凝土剪力墙试件的往复水平力加载试验。试验表明:试件的纵筋和钢骨(钢管)受压屈服先于受拉屈服。试件的破坏形态为底部混凝土压碎剥落,约束边缘构件内的纵筋和钢骨(钢管)压曲,试件丧失竖向承载力。钢骨和钢管提高了试件的正截面承载力,且随位移增大试件能稳定地保持最大承载力。配置工字钢、槽钢和方钢管的试件的极限位移角为1/73~1/59,与钢筋混凝土试件基本相同;配置圆钢管的试件的极限位移角达1/44,墙端约束边缘构件配置圆钢管对提高高轴压比剪力墙的变形能力有显著作用。根据试验结果,提出了高轴压比钢骨混凝土剪力墙屈服、承载力极限状态和变形极限状态的截面应变、应力分布,建立了正截面承载力的计算式和顶点水平位移计算式,计算结果与试验结果符合较好。  相似文献   

12.
根据17个型钢混凝土(SRC)异形柱试件在低周反复水平力作用下的试验结果,采用大小偏压界限破坏理论和叠加法理论计算了SRC异形柱的轴压力系数限值,并与试验结果进行比较,结果表明:采用大小偏压界限破坏理论的计算结果与实际不符,计算SRC异形柱的轴压力系数限值存在缺陷;而采用叠加法理论的计算结果与试验结果吻合较好,并给出了SRC异形柱的轴压力系数限值。通过对比SRC异形柱的轴压力系数限值和RC异形柱的轴压比限值表明:与RC异形柱相比,SRC异形柱所能承受的轴压力限值明显提高,可有效改善普通RC异形柱因轴压比限值过低而影响其适用范围。  相似文献   

13.
通过在约束边缘构件位置和截面中部设置多根钢管,形成了一组不同钢管布置形式的钢管高强混凝土组合剪力墙。通过对8片剪跨比为2.08的剪力墙试件在高轴压比(0.40~0.62)下的低周往复加载试验,研究其破坏形态、承载力、变形能力、滞回性能等。试验结果表明:试件的破坏形态为压弯作用下的受弯破坏,墙体根部混凝土压溃范围为整个试件宽度和300~400mm高度,钢管与混凝土之间没有出现明显的黏结滑移;在峰值荷载前,试件的截面应变分布基本符合平截面假定;与钢筋混凝土剪力墙相比,设置钢管后在轴向压力最大增加19%的情况下,受弯承载力提高了21%~43%,试件的屈服位移角达到1/300,峰值荷载时位移角不低于1/100,极限位移角达到1/75,个别试件接近1/40,变形能力提高了约30%,试件的滞回性能明显改善,表明所设计的钢管高强混凝土剪力墙具有良好的抗震性能和抗倒塌能力。  相似文献   

14.
采用MSC.Marc建立SRC剪力墙有限元分析模型,通过对5片SRC剪力墙试件的非线性有限元分析,验证了有限元模型的合理性和可靠性。对轴压比和钢骨配钢率对SRC剪力墙抗震性能的影响进行了参数分析。SRC剪力墙的承载能力随轴压比的增加而提高,变形能力随轴压比的增大而降低;承载能力随配钢率的增加而提高,变形能力也有所提高,但轴压比较高时不明显。  相似文献   

15.
以北京国贸三期实际工程为背景,对其核心筒中型钢混凝土异型组合柱进行试验研究。这种柱含钢率高,型钢造型复杂,是一种新型构件。通过对这类构件的轴压、压弯和剪切试验,全面研究构件相应的破坏特征、承载力、滞回性能和延性,并对比研究型钢分散配置后不同连接方式以及不同轴压比的影响。研究表明,这类构件性能良好,且连接板的设置与轴压比大小对性能有直接影响,设计时应予以充分的考虑。通过试验研究提出高含钢率型钢混凝土柱抗剪及压弯承载力计算方法,其计算结果与试验结果符合较好。  相似文献   

16.
为了研究预应力混凝土(PC)剪力墙的抗震性能,提出剪力墙在拉压变轴力作用下的水平往复加载试验加载制度,完成3片剪跨比为1.0的预应力混凝土墙在恒定轴拉力、恒定轴压力和拉压变轴力作用下的水平往复加载试验,研究其破坏模式、滞回性能、承载力、变形能力、刚度和残余裂缝宽度,并与型钢混凝土(SRC)墙和普通RC墙的抗震性能进行了对比。试验结果表明:恒定轴拉力试验中,预应力混凝土墙发生了腹板剪切破坏;恒定轴力试验中墙体发生了斜压破坏;拉压变轴力试验中,墙体在压剪方向加载时发生剪压破坏。拉压变轴力加载导致预应力混凝土墙拉剪和压剪承载力分别降低了18.7%和10.5%。预应力混凝土墙在恒定轴拉力和拉压变轴力作用下的极限位移角为1.2%~1.6%,变形能力大于JGJ 3—2010《高层建筑混凝土结构技术规程》规定的弹塑性位移角限值(1/100);恒定轴压力试验中水平峰值荷载超过了墙体截面受剪承载力限值,出现斜压破坏,极限位移角仅为0.6%。预应力混凝土墙试件与SRC墙试件的刚度、承载力和变形能力接近,前者的残余裂缝宽度小于后者的,表现出更好的震后可修复性。由于预应力有效抑制了墙体水平贯通裂缝的形成、防止出现沿水平裂面的滑移破坏,因此在较大轴拉力水平时预应力混凝土墙比普通RC墙的抗侧刚度和承载能力均显著提高。总体来看,预应力混凝土墙抗震性能优良,是一种改善高层建筑中受拉剪力墙抗震性能的有效手段。  相似文献   

17.
纤维增强混凝土剪力墙抗震性能试验研究与理论分析   总被引:1,自引:0,他引:1  
为根本改善混凝土基体的脆性,提高混凝土剪力墙的抗震性能和损伤容限,设计制作6个局部纤维增强混凝土(FRC)剪力墙试件,在试件变形关键部位采用FRC替代普通混凝土,并考虑高轴压比下剪力墙受压钢筋屈曲和受拉纵筋应力集中的问题,在塑性铰区纵向钢筋上设置钢套管,以改善受力钢筋的稳定性和变形性能。通过对悬臂剪力墙试件的拟静力试验,研究此类剪力墙的破坏现象、受力机理和滞回特性,探讨轴压比、FRC区高度、纵筋强度和钢套管长度等因素对墙体变形能力及耗能能力的影响。研究表明,与普通混凝土剪力墙试件相比,塑性铰区采用FRC的剪力墙试件具有较高的损伤容限和变形能力;提高钢筋强度和延性以及在纵筋上设置钢套管,对其抗震性能和耗能能力均具有明显的改善作用。  相似文献   

18.
《钢结构》2011,(8):71
方钢管钢筋混凝土短柱与方钢管钢骨混凝土短柱(STRC与STSRC)是将纵向钢筋置于冷弯薄壁钢管中。在这项研究中,对6根STRC和STSRC短柱进行固定轴压力下和往复侧向压力下的试验研究,分析两种构件的抗震性能。主要参数为轴压比和纵筋的配筋率。建立三维非线性有限元模型,模拟试件的性能和强度。基于试验和数值模拟结果,提出计算STRC和STSRC短柱剪切强度的设计公式。  相似文献   

19.
The static performances of 12 steel reinforced concrete (SRC) columns with high encased steel ratios subjected to biaxial bending and axial loadings are studied experimentally. The main design parameters of the specimens in this experiment are the encased steel ratio, axial compression ratio, and shape distribution of the encased steel section. The crack formation, failure processes, bearing capacity, and ductility of the specimens are investigated in detail. The experimental results show that the increased encased steel ratio results in the increased bearing capacity and ductility of the specimens. Furthermore, the stiffness of the specimen degenerates gradually beyond the peak point with an increase in the axial compression ratio. In addition, a more extensive shape distribution of an encased steel section has a positive influence on the ductility of the specimen. A comparison of the yield and peak bearing capacities between the experimental results of this study and the predictions according to Eurocode 4 also highlights that Eurocode 4 would underestimate the bearing capacity of SRC columns with high encased steel ratios because it ignores the confinement of concrete provided from the steel section and hoops and it employs a conservative prediction approach for the simplified axial load‐bending moment curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号