首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of 30% glycerol, the cilia of a permeabilized cell model from Paramecium exhibit dynamic orientation changes while displaying only a restricted cyclic beating with a very small amplitude. The direction of cilia under these conditions corresponds to the direction of the effective power stroke of cilia beating in the absence of glycerol, i.e., pointing posteriorly in the absence of Ca2+ and anteriorly at > 10(-6) M Ca2+. Ciliary reorientation toward the posterior in response to the removal of Ca2+ is particularly conspicuous; all the cilia become predominantly pointing to the posterior end all through their beating phases. Previous studies suggested that the effect of glycerol is caused through modification of cAMP-dependent protein phosphorylation. To determine whether glycerol in fact affects ciliary reorientation through changes in protein phosphorylation, here we examined protein phosphorylation in the axonemes. Glycerol stimulated cAMP-induced phosphorylation of 29-kDa and 65-kDa proteins. The stimulation of phosphorylation was found to be partly due to the inhibition of endogenous phosphodiesterase (PDE), and partly due to the inhibition of the dephosphorylation of the 29-kDa and 65-kDa phosphoproteins within the axoneme. Thus glycerol appears to cause predominant posterior orientation of cilia by stimulating cAMP-dependent phosphorylation on those proteins. In addition, glycerol appears to inhibit ciliary beating through inhibition of dynein ATPase.  相似文献   

2.
Airway epithelial-derived nitric oxide (NO), through the activation of nucleotide cyclases and downstream kinases, stimulates ciliary beating, yet the precise locations of these enzymes are unknown. We hypothesized that these NO-activated enzymes are located within, or adjacent to, the ciliary axoneme. Immunohistochemistry of intact ciliated cells revealed that endothelial-type nitric oxide synthase (eNOS), the RII isoform of the cAMP-dependent protein kinase (PKA-RII), the type I isoform of the cGMP-dependent protein kinase (PKG-I), and guanylate cyclase beta (GC-beta) all colocalized with pericentrin to the basal body. In contrast, the PKA-RI isoform and the PKG-II isoform localized to ciliary axonemes. Western blot analysis of isolated demembranated ciliary preparations detected eNOS, GC-beta, and both isoforms of PKA and PKG. An A-kinase-anchoring protein was also detected. Our findings suggest that these enzymes are sequestered close to their points of action into a discrete ciliary metabolon, enabling targeted phosphorylation and efficient upregulation of ciliary beating.  相似文献   

3.
Mitochondria isolated from 4-day-old dark-grown wheat seedlings were purified by self-generating Percoll gradient. Phosphorylation reaction was carried out in vitro with the addition of [ c-32P]ATP and polypeptides resolved by 50S-PAGE were subjected to autoradiography. Amongst endogenous polypeptides phosphorylated, four polypeptides of 120, 66, 43 and 21 kD were prominent. Addition of Mg2+ (5 mM) caused dephosphorylation of 120 and 66 kO polypeptides but, simultaneously, induced/enhanced the phosphorylation of some polypeptides, with the effect being more pronounced on a 67 kD species. The phosphorylation of 120 kD species and a few other polypeptides was also down-regulated and that of a 18 kD polypeptide was up-regulated by Ca2+. The present study provides evidence that phosphorylation status of mitochondrial proteins is regulated by Mg2+ and/or Ca2+-dependent phosphatase(s) and protein kinase(s).  相似文献   

4.
Previously, we have shown that the ATPase-dependent motion of cilia in bovine bronchial epithelial cells (BBEC) can be regulated through the cyclic nucleotides, cAMP via the cAMP-dependent protein kinase (PKA) and cGMP via the cGMP-dependent protein kinase (PKG). Both cyclic nucleotides cause an increase in cilia beat frequency (CBF). We hypothesized that cAMP and cGMP may act directly at the level of the ciliary axoneme in BBEC. To examine this, we employed a novel cell-free system utilizing detergent-extracted axonemes. Axoneme movement was whole-field analyzed digitally with the Sisson-Ammons video analysis system. A suspension of extracted axonemes remains motionless until the addition of 1 mM ATP that establishes a baseline CBF similar to that seen when analyzing intact ciliated BBEC. Adding 10 microM cAMP or 10 microM cGMP increases CBF beyond the established ATP baseline. However, the cyclic nucleotides did not stimulate CBF in the absence of ATP. Therefore, the combination of cAMP and cGMP augments ATP-driven CBF increases at the level of isolated axoneme.  相似文献   

5.
The endogenous protein kinases of isolated Paramecium tetraurelia cilia phosphorylated approximately 30 ciliary polypeptides in vitro. Labeling with [gamma-32P]ATP was not proportional to the amount of each protein in cilia; some minor polypeptides (e.g., 67,000 and 180,000 mol wt) were more heavily labeled than some major polypeptides. Certain of the endogenous substrates for protein kinase were localized in the ciliary membrane (130,000, 86,000, 67,000, and 45,000 mol wt); others were found in axonemes or in both fractions. With cilia from bacterized cultures in the undefined Cerophyl medium, the labeling of specific endogenous phosphate acceptors was altered by pH, cyclic AMP, and cyclic GMP, but the labeling pattern was not affected by the presence of Na+ or K+ (15 mM), Ba++ (5 mM), Ca++ (10(-5) or 10(-4) M), or EGTA. Very similar results were obtained with cilia from cells grown axenically in a semidefined medium; the molecular weights and the extent of phosphorylation of the phosphopolypeptides were comparable to those of cilia from bacterized Cerophyl cultures, although no significant cyclic nucleotide effects were observed in the axenic cilia. Most of the phosphopolypeptides labeled in vitro also turned over rapidly in vitro. The phosphoprotein phosphatase responsible for turnover was partially inhibited by 5 mM NaF. The pattern of ciliary polypeptides labeled in vivo was similar to that observed in the in vitro experiments, although the relative intensities of labeling differed. Six behavioral mutants of Paramecium, known to have defects in the excitable membrane that regulates the ciliary beat, showed normal patterns of ciliary protein phosphorylation in vitro, with and without added cyclic nucleotides, at both pH 6.0 and pH 8.0. The mutants also had apparently normal phosphoprotein phosphatase. The Paranoiac A mutant, however, showed a reduction in cyclic GMP-stimulated protein kinase activity.  相似文献   

6.
In the cilia of vertebrate olfactory sensory neurons, cytoplasmic Ca(2+) concentration increases in response to odorant stimulation, and this increase has been implicated to have important roles in the regulation of olfactory responses. Since protein phosphorylation is often a regulatory mechanism of biological reactions, we explored the effect of Ca(2+) on phosphorylation reactions in the frog olfactory cilia. First, we found that a 45-kDa phosphoprotein (p45) is predominantly phosphorylated in vitro in the isolated cilia in a Ca(2+)-dependent manner. However, later studies showed that the phosphorylation level of p45 is controlled by a dynamic equilibrium between phosphorylation and dephosphorylation. Although both activities are enhanced at high Ca(2+) concentrations (K(1/2) = approximately 2 microM in both reactions), the enhancement of dephosphorylation is relatively greater than that of phosphorylation. As a result, the steady phosphorylation level of p45 is lower at high than at low Ca(2+) concentration. The phosphorylation/dephosphorylation equilibrium was founed to involve protein kinases sensitive to zinc and heparin, and an unknown phosphatase(s). The present result suggests the presence of a novel Ca(2+)-signaling pathway that involves phosphorylation of p45 in the olfactory cilia.  相似文献   

7.
A large number of polypeptides were phosphorylated when in vitro protein phosphorylation was carried out in nuclei isolated from dark-grown seedlings. For studying the effect of light, dark-grown seedlings were exposed to light and the isolated nuclear proteins phosphorylated in vitro. Although 4 h of white light was sufficient to alter the phosphorylation status of at least two polypeptides of 19 and 17 kD but the effect of light was more pronounced after irradiation for 8 h or more, leading to virtual disappearance of a 19 kD and emergence of a 17 kD phosphopolypeptide. Studies using norflurazon, a bleaching herbicide, indicate that, in addition to 19 and 17 kD phosphopolypeptides, another 21 kD phosphopolypeptide may be involved in the de-etiolation process. However, the nature of the photoreceptor involved in these light-induced changes in nuclear protein phosphorylation remains to be established.  相似文献   

8.
Suppressor of fused (Sufu) is an essential negative regulator of the sonic hedgehog (Shh) pathway, but little is known about how Sufu itself is normally regulated. Here, we report that Sufu is phosphorylated at Ser-342 and Ser-346 by GSK3β and cAMP-dependent protein kinase A (PKA), respectively, and phosphorylation at this dual site stabilizes Sufu against Shh signaling-induced degradation. We further show that localization of Sufu in the primary cilium is induced by Shh signaling and is required for the turnover of both phosphorylated and total Sufu. Perturbing Sufu phosphorylation with PKA inhibitors or replacing Ser-346 with alanine reduced the stay and replacing Ser-342 and Ser-346 with aspartic acid prolonged the stay of Sufu in the cilia. Finally, ciliary localization of Gli2/3 also required Smo and was similarly influenced by perturbations of PKA activity or mutations at the dual Sufu phosphorylation site. Thus, Shh likely induced trafficking of phospho-Sufu into the primary cilium in a complex with Gli2/3, and dephosphorylation triggered a retrograde export, allowing Sufu to be degraded by the ubiquitin-proteasome system.  相似文献   

9.
Several endogenous substrate proteins of cilia from axenically grown Paramecium tetraurelia were phosphorylated in vitro by inherent protein kinases (PKs). Labeling was stimulated by cAMP and to a lesser extent by cGMP. ATP breakdown was most rapid in cilia and subciliary fractions. Using multiple substrate additions during incubations it was shown that phosphorylation was almost completed within 30 s. Very little dephosphorylation by phosphoprotein phosphatases occurred during 5 min of incubation. Proteins of molecular weight of 103 000 and 46 000 were shown to be particularly associated with axonemal structures of the cilia. No distinct differences in phosphorylation patterns were apparent in ciliary membrane vesicles of low and high buoyant density, which exhibit differential enzyme patterns. cAMP receptor proteins were identified by use of the photoaffinity label 8-azido-[32P]cAMP. Receptor proteins with apparent molecular weights of 43 000, 39 000, 37 000, 31 000 and 30 000 were probably related to the regulatory subunits of cAMP-dependent protein kinases as evidenced by inhibition of incorporation of the photoaffinity label by low concentrations of cAMP. Tagging of a protein of 85 000 molecular weight was specifically inhibited by cGMP, thus in all likelihood it corresponded to a cGMP-dependent protein kinase. Corresponding autophosphorylated protein bands were observed with gamma-[32P]ATP. A functional role for protein phosphorylation in cilia of Paramecium remains to be established.  相似文献   

10.
The contractile axostyle is a ribbon-shaped organelle present in certain species of flagellates found in the hindgut of wood eating insects. This organelle propagates an undulatory wave whose motion, like flagella and cilia, is related to microtubules. Unlike the axoneme of cilia and flagella, however, the axostyle is composed of singlet microtubules linked together in parallel rows. Axostyles were isolated from Cryptocercus gut protozoa with Triton X-100. Normal motility of the isolated axostyle could be restored with adenosine triphosphate (ATP); the specific conditions necessary for this reactivation were essentially identical with those reported for the reactivation of isolated flagella or whole sperm. ATPase activity of the isolated axostyle was comparable to the values reported for ciliary or flagellar axonemes. The axostyle was reasonably specific for ATP. Most of the proteins of the isolated axostyle comigrated with proteins of the ciliary axoneme on sodium dodecyl sulfate (SDS) polyacrylamide gels (i e. equivalent molecular weights). These included the following: the higher molecular weight component of dynein, tubulin, linkage protein (nexin), and various secondary proteins. Evidence for dynein in the axostyle is presented and a model proposed to explain how repeated propagated waves can be generated.  相似文献   

11.
We studied the regulation of dephosphorylation of cAMP-dependent phosphorylated proteins of isolated, permeabilized (skinned) myocardial cells from adult rat. Staurosporine, a potent inhibitor of protein kinase, inhibited cAMP-dependent phosphorylation of phospholamban and troponin-I, the key proteins in the control of contraction and relaxation of the myocardial cells. Staurosporine antagonized the stimulatory action of cAMP on the spontaneous beating of the myocytes accompanied by dephosphorylation of phospholamban but not of troponin-I at pCa 7-8. In cold ATP dilution experiments with apparent stoppage of protein phosphorylation, dephosphorylation of phospholamban was accelerated both by Ca2+ and staurosporine but that of troponin-I took place only in the presence of Ca2+ ion (pCa less than 6.5). These phenomena suggest a bi-directional regulation of dephosphorylation of the key proteins by the intracellular messengers cAMP and Ca2+.  相似文献   

12.
As a first step in the biochemical analysis of membrane excitation in wild-type Paramecium and its behavioral mutants we have defined the protein composition of the ciliary membrane of wild-type cells. The techniques for the isolation of cilia and ciliary membrane vesicles were refined. Membranes of high purity and integrity were obtained without the use of detergents. The fractions were characterized by electron microscopy, and the proteins of whole cilia, axonemes, and ciliary membrane vesicles were resolved by SDS polyacrylamide gel electrophoresis and isoelectric focusing in one and two dimensions. Protein patterns and EM appearance of the fractions were highly reproducible. Over 200 polypeptides were present in isolated cilia, most of which were recovered in the axonemal fraction. Trichocysts, which were sometimes present as a minor contaminant in ciliary preparations, were composed of a very distinct set of over 30 polypeptides of mol wt 11,000--19,000. Membrane vesicles contained up to 70 polypeptides of mol wt 15,000--250,000. The major vesicle species were a high molecular weight protein (the "immobilization antigen") and a group of acidic proteins with mol wt similar to or approximately 40,000. These and several other membrane proteins were specifically decreased or totally absent in the axoneme fraction. Tubulin, the major axonemal species, occurred only in trace amounts in isolated vesicles; the same was true for Tetrahymena ciliary membranes prepared by the methods described in this paper. A protein of mol wt 31,000, pI 6.8, was virtually absent in vesicles prepared from cells in exponential growth phase, but became prominent early in stationary phase in good correlation with cellular mating reactivity. This detailed characterization will provide the basis for comparison of the ciliary proteins of wild-type and behavioral mutants and for analysis of topography and function of membrane proteins. It will also be useful in future studies of trichocysts and mating reactions.  相似文献   

13.
ABSTRACT. We have used the anti-phosphoprotein antibody MPM-2 to examine changes in phosphorytation of cortical proteins during cilia regeneration in Tetrahymena thermophila . Although numerous cortical proteins are phosphorylated in both nondeciliated and deciliated cells, deciliation induces a dramatic increase in the phosphorylation of a 90-kDa cortical protein. The 90-kDa protein remained phosphorylated during cilia regeneration and then gradually became dephosphorylated. The 90-kDa protein was phosphorylated and dephosphorylated normally in Tetrahymena mutants that assemble short cilia, suggesting that achievement of full length is not the signal that triggers dephosphorylation of the 90-kDa protein. When initiation of cilia assembly is blocked, the 90-kDa protein becomes phosphorylated and remains phosphorylated for an extended period of time, suggesting that initiation of cilia elongation triggers eventual dephosphorylation of the 90-kDa protein, regardless of how long the cilia actually become.  相似文献   

14.
The actin/myosin II cytoskeleton and its role in phagocytosis were examined in primary cultures of dog thyroid cells. Two (19 and 21 kD) phosphorylated light chains of myosin (P-MLC) were identified by two- dimensional gel electrophoresis of antimyosin immunoprecipitates, and were associated with the Triton X-100 insoluble, F-actin cytoskeletal fraction. Analyses of Triton-insoluble and soluble 32PO4-prelabeled protein fractions indicated that TSH (via cAMP) or TPA treatment of intact cells decreases the MLC phosphorylation state. Phosphoamino acid and tryptic peptide analyses of 32P-MLCs from basal cells showed phosphorylation primarily at threonine and serine residues; most of the [32P] appeared associated with a peptide containing sites typically phosphorylated by MLC kinase. Even in the presence of the agents which induced dephosphorylation, the phosphatase inhibitor, calyculin A, caused a severalfold increase in MLC phosphorylation at several distinct serine and threonine sites which was also associated with actomyosin and cell contraction. Phosphorylation of cell homogenate proteins or the cytoskeletal fraction with [gamma-32P]ATP indicated that Ca2+, EGTA, or trifluoperazine (TFP) has little effect on the phosphorylation of MLC. Both fluorescent phalloidin and antimyosin staining of cells showed distinct dorsal and ventral stress fiber complexes which were disrupted within 30 min by TSH and cAMP; TPA appeared to cause disruption of dorsal, and rearrangement of ventral complexes. Concomitant with MLC dephosphorylation and stress fiber disruption, TSH/cAMP, but not TPA, induced dorsal phagocytosis of latex beads. While stimulation of either A or C-kinase disrupts dorsal stress fibers and rearranges actomyosin, another event(s) mediated by A-kinase appears necessary for phagocytic activity.  相似文献   

15.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

16.
Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.  相似文献   

17.
18.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

19.
Tetrahymena thermophila cells were labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate, a sensitive nonradioactive probe for cell surface proteins, and Western blots of axonemes and ciliary membrane vesicles were compared to cilia fractionated with Triton X-114 (TX-114) in order to study the orientation of ciliary membrane proteins. Greater than 40 ciliary surface polypeptides, from greater than 350 kDa to less than 20 kDa, were resolved. The major surface 50-60 kDa proteins are hydrophobic and partition into the TX-114 detergent phase. Two high molecular weight proteins, one of which is biotinylated, comigrate with the heavy chains of ciliary dynein, sediment at 14S in a sucrose gradient, and partition into the TX-114 aqueous phase. Fractions containing these high molecular weight proteins as well as fractions enriched in 88-kDa and 66-kDa polypeptides contain Mg(2+)-ATPase activities. Detergent-solubilized tubulins partition into the TX-114 aqueous phase, are not biotinylated, and must not be exposed to the ciliary surface. The detergent-insoluble axoneme and membrane fraction contains a 36-kDa polypeptide and a portion of the 50-kDa polypeptides that otherwise partition into the detergent phase. These polypeptides could not be solubilized by ATP or by NaCl extraction and appear to be associated with pieces of ciliary membrane tightly linked to the axoneme. The ciliary membrane polypeptides were also tested for Concanavalin A binding and at least sixteen Con A-binding polypeptides were resolved. Of the major Con A-binding polypeptides, three are hydrophobic and partition into the TX-114 detergent phase, three partition into the TX-114 aqueous phase, and four partition exclusively in the detergent-insoluble fraction, which contains axonemes and detergent-resistant membrane vesicles.  相似文献   

20.
The axoneme of motile cilia and eukaryotic flagella is an ordered assembly of hundreds of proteins that powers the locomotion of single cells and generates flow of liquid and particles across certain mammalian tissues. The symmetric and organized structure of the axoneme has invited structural biologists to unravel its intricate architecture at different scales. In the last few years, single-particle cryo-electron microscopy provided high-resolution structures of axonemal complexes that comprise dozens of proteins and are key to cilia function. This review summarizes unique structural features of the axoneme and the framework they provide to understand cilia assembly, the mechanism of ciliary beating, and clinical conditions associated with impaired cilia motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号