首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shirane found in the middle of the 20th century that the solid solution PZT had a lot of fine characteristics and carried out detailed researches[1]. The critical phase transition field of antiferroelectric decreased by adding titanate. Titanate expands t…  相似文献   

2.
The multiple field-induced phase transition in 4 at.% La modified Pb(Zr,Sn,Ti)O 3 family with temperature from -40℃ to 45℃ in reported. Two electric field-induced transitions from a metastable antiferroelectric phase to two ferroelectric phases are observed is polarization at the applied field of 4 MV/m. The critical field of phase transition between two ferroelectric phases is not larger than 2.5 MV/m, about ten to twenty percent of that ever found in PZT based ceramics. Lattice structure is shown to be orthorhombic by X-ray diffraction. Dielectric investigation reveals a relaxor-like ferroelectric behavior. Temperature-electric field phase diagram is also presented. An appreciate kind of materials is provided to investigate multiple field-induced phase transition with PZT-based ceramics.  相似文献   

3.
Room-temperature ferroelectricity in strained SrTiO3   总被引:1,自引:0,他引:1  
Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (T(c)) is traditionally accomplished by chemical substitution-as in Ba(x)Sr(1-x)TiO(3), the material widely investigated for microwave devices in which the dielectric constant (epsilon(r)) at GHz frequencies is tuned by applying a quasi-static electric field. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees, which is detrimental to tunability and microwave device performance. An alternative way to adjust T(c) in ferroelectric films is strain. Here we show that epitaxial strain from a newly developed substrate can be harnessed to increase T(c) by hundreds of degrees and produce room-temperature ferroelectricity in strontium titanate, a material that is not normally ferroelectric at any temperature. This strain-induced enhancement in T(c) is the largest ever reported. Spatially resolved images of the local polarization state reveal a uniformity that far exceeds films tailored by chemical substitution. The high epsilon(r) at room temperature in these films (nearly 7,000 at 10 GHz) and its sharp dependence on electric field are promising for device applications.  相似文献   

4.
Lead-free piezoceramics   总被引:8,自引:0,他引:8  
Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly <001> textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.  相似文献   

5.
Ikeda N  Ohsumi H  Ohwada K  Ishii K  Inami T  Kakurai K  Murakami Y  Yoshii K  Mori S  Horibe Y  Kitô H 《Nature》2005,436(7054):1136-1138
Ferroelectric materials are widely used in modern electric devices such as memory elements, filtering devices and high-performance insulators. Ferroelectric crystals have a spontaneous electric polarization arising from the coherent arrangement of electric dipoles (specifically, a polar displacement of anions and cations). First-principles calculations and electron density analysis of ferroelectric materials have revealed that the covalent bond between the anions and cations, or the orbital hybridization of electrons on both ions, plays a key role in establishing the dipolar arrangement. However, an alternative model-electronic ferroelectricity-has been proposed in which the electric dipole depends on electron correlations, rather than the covalency. This would offer the attractive possibility of ferroelectric materials that could be controlled by the charge, spin and orbital degrees of freedom of the electron. Here we report experimental evidence for ferroelectricity arising from electron correlations in the triangular mixed valence oxide, LuFe(2)O(4). Using resonant X-ray scattering measurements, we determine the ordering of the Fe(2+) and Fe(3+) ions. They form a superstructure that supports an electric polarization consisting of distributed electrons of polar symmetry. The polar ordering arises from the repulsive property of electrons-electron correlations-acting on a frustrated geometry.  相似文献   

6.
铁电陶瓷材料实验研究及应用   总被引:1,自引:0,他引:1  
介绍了压电晶体材料和热释电晶体的极化强度与外电场的线性关系。并通过检测设备(电桥、示波仪、数字表)验证了线性电介质和铁电晶体是典型的非线性电介质外,其极电强度与外电场的关系呈非线性。特别是在具体温度范围内具有自发极化,而且共自发极化强度在电场中与电场强度有常规的电滞回线的形式  相似文献   

7.
本文讨论铁电体中电畴壁在扰动力作用下的运动,指出在常力作用下畴壁有经典非牛顿粒子的行为.每一种铁电材料存在着与温度有关的本征频率,在周期性外电场作用下,畴壁作振动,但振幅不是常数,当外场频率接近本征频率时,振幅趋于稳定极大值,即发生共振,使电矩增加.  相似文献   

8.
本文通过热力学自由能函数说明了电致伸缩效应唯象理论及其在各向异性强非线性铁电晶体中的应用。实验发现,菱方相纯PZT陶瓷组分的主要场诱应变效应是电致伸缩效应,可用x—P关系的二次方律来描述。但相界附近的四方相PZT陶瓷组分和PLZT组分,压电效应分量明显增大,其电致伸缩效应已呈现明显的四次方效应。可以预期,PZST系统的主要机电耦合效应是电致伸缩效应,其电场诱导应变是极化强度的高偶次方函数。  相似文献   

9.
Hiraga T  Miyazaki T  Tasaka M  Yoshida H 《Nature》2010,468(7327):1091-1094
The unusual capability of solid crystalline materials to deform plastically, known as superplasticity, has been found in metals and even in ceramics. Such superplastic behaviour has been speculated for decades to take place in geological materials, ranging from surface ice sheets to the Earth's lower mantle. In materials science, superplasticity is confirmed when the material deforms with large tensile strain without failure; however, no experimental studies have yet shown this characteristic in geomaterials. Here we show that polycrystalline forsterite + periclase (9:1) and forsterite + enstatite + diopside (7:2.5:0.5), which are good analogues for Earth's mantle, undergo homogeneous elongation of up to 500 per cent under subsolidus conditions. Such superplastic deformation is accompanied by strain hardening, which is well explained by the grain size sensitivity of superplasticity and grain growth under grain switching conditions (that is, grain boundary sliding); grain boundary sliding is the main deformation mechanism for superplasticity. We apply the observed strain-grain size-viscosity relationship to portions of the mantle where superplasticity has been presumed to take place, such as localized shear zones in the upper mantle and within subducting slabs penetrating into the transition zone and lower mantle after a phase transformation. Calculations show that superplastic flow in the mantle is inevitably accompanied by significant grain growth that can bring fine grained (≤1?μm) rocks to coarse-grained (1-10?mm) aggregates, resulting in increasing mantle viscosity and finally termination of superplastic flow.  相似文献   

10.
An all-organic composite actuator material with a high dielectric constant   总被引:11,自引:0,他引:11  
Zhang QM  Li H  Poh M  Xia F  Cheng ZY  Xu H  Huang C 《Nature》2002,419(6904):284-287
Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.  相似文献   

11.
本文研究了硅橡胶介电弹性体复合材料的热力学和热机电稳定性.考虑温度、掺杂和电致伸缩变形的耦合影响,建立介电弹性体复合材料的介电常数模型,从而构建系统的电场能,基于此耦合发展的Ogden模型研究复合材料的热力学性能和热机电稳定性性能.结果表明,当电致伸缩系数减小,或材料常数比减小,或温度增加,或唯象学参数增加,或电致伸缩系数比增加时,介电弹性体临界名义电场增加,从而热力学系统的稳定性增强.这些结论对于硅橡胶纳米复合材料的设计和制备及其应用器件研究有巨大帮助.  相似文献   

12.
Kobatake S  Takami S  Muto H  Ishikawa T  Irie M 《Nature》2007,446(7137):778-781
The development of actuators based on materials that reversibly change shape and/or size in response to external stimuli has attracted interest for some time. A particularly intriguing possibility is offered by light-responsive materials, which allow remote operation without the need for direct contact to the actuator. The photo-response of these materials is based on the photoisomerization of constituent molecules (typically trans-cis isomerization of azobenzene chromophores), which gives rise to molecular motions and thereby deforms the bulk material. This effect has been used to create light-deformable polymer films and gels, but the response of these systems is relatively slow. Here we report that molecular crystals based on diarylethene chromophores and with sizes ranging from 10 to 100 micrometres exhibit rapid and reversible macroscopic changes in shape and size induced by ultraviolet and visible light. We find that on exposure to ultraviolet light, a single crystal of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene changes from a square shape to a lozenge shape, whereas a rectangular single crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene contracts by about 5-7 per cent. The deformed crystals are thermally stable, and switch back to their original state on irradiation with visible light. We find that our crystals respond in about 25 microseconds (that is, about five orders of magnitude faster than the response time of the azobenzene-based polymer systems) and that they can move microscopic objects, making them promising materials for possible light-driven actuator applications.  相似文献   

13.
钛酸锶钡(Ba1-xSrxTiO3(BST))铁电薄膜材料在集成铁电器件领域具有很大的优势和潜力,BST与铂(Pt)等贵金属电极材料的界面特性限制了BST的实际应用,氧化物超导薄膜代替贵金属材料做底部电极取得了不少突破性的进展,综述了国内外研究人员对Ba1-xSrxTiO3(BST)/钙钛矿型氧化物超导薄膜异质结构和基本介电性能等方面的研究及成果。  相似文献   

14.
采用Landau-Devonshire自由能理论和晶格模型,研究了PbZr1-xTixO3(PZT)/SrTiO3(STO)复合薄膜中PZT的钛(Ti)含量(x=0.5,0.6,0.8,1.0)对铁电隧道结极化强度、总电势、电导和隧穿电阻等的影响,从而增大隧穿电阻.模拟结果表明:随着层数增加,复合薄膜极化强度增大;随着Ti含量增加,隧道结电导先减小后增大,其隧穿电阻率先增大后减小;PZT极化强度、STO总电势和PZT总电势的斜率均在x=0.8时最大.  相似文献   

15.
Magnetic-field-induced shape recovery by reverse phase transformation   总被引:2,自引:0,他引:2  
Large magnetic-field-induced strains have been observed in Heusler alloys with a body-centred cubic ordered structure and have been explained by the rearrangement of martensite structural variants due to an external magnetic field. These materials have attracted considerable attention as potential magnetic actuator materials. Here we report the magnetic-field-induced shape recovery of a compressively deformed NiCoMnIn alloy. Stresses of over 100 MPa are generated in the material on the application of a magnetic field of 70 kOe; such stress levels are approximately 50 times larger than that generated in a previous ferromagnetic shape-memory alloy. We observed 3 per cent deformation and almost full recovery of the original shape of the alloy. We attribute this deformation behaviour to a reverse transformation from the antiferromagnetic (or paramagnetic) martensitic to the ferromagnetic parent phase at 298 K in the Ni45Co5Mn36.7In13.3 single crystal.  相似文献   

16.
在Knops、Smith和Warren等人在电致伸缩问题研究的基础上,将Stratton、Landau和Lifshitz导出的电致伸缩体积力引入电致伸缩力学问题中,得出了合理的电致伸缩基本方程.并通过构造特解势函数,建立了电致伸缩力学问题的位移解法.利用变形条件、本构方程平衡方程导出了位移特势函数解所满足的Laplace方程.相应的补充解简化成一般纯弹性边界值问题,利用传统解法可以很容易求解.电致伸缩材料位移函数解法不但对各向同性材料适用,而且可以应用到各向异性材料的求解之中.最后通过算例验证了解法的正确性.  相似文献   

17.
Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m(-1) (refs 1-3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 10(9) electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.  相似文献   

18.
Observation of coupled magnetic and electric domains   总被引:14,自引:0,他引:14  
Ferroelectromagnets are an interesting group of compounds that complement purely (anti-)ferroelectric or (anti-)ferromagnetic materials--they display simultaneous electric and magnetic order. With this coexistence they supplement materials in which magnetization can be induced by an electric field and electrical polarization by a magnetic field, a property which is termed the magnetoelectric effect. Aside from its fundamental importance, the mutual control of electric and magnetic properties is of significant interest for applications in magnetic storage media and 'spintronics'. The coupled electric and magnetic ordering in ferroelectromagnets is accompanied by the formation of domains and domain walls. However, such a cross-correlation between magnetic and electric domains has so far not been observed. Here we report spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3, obtained by imaging with optical second harmonic generation. The coupling originates from an interaction between magnetic and electric domain walls, which leads to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.  相似文献   

19.
Ferroelectric have been considered as good candidates for room temperature tunable microwave elements for wireless communication devices. Much effort has been done in the past decade and many excellent results have achieved in highly epitaxial ferroelectric (Ba,Sr)TiO_3 thin films and related materials. However, high dielectric insertion loss and soft mode effects at high frequency have limited the practical applications of these ferroelectric materials. Various techniques have been adopted to improve the h...  相似文献   

20.
Hofmann DC  Suh JY  Wiest A  Duan G  Lind ML  Demetriou MD  Johnson WL 《Nature》2008,451(7182):1085-1089
The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approximately 1 GPa, tensile ductility of approximately 2-3 per cent, and an enhanced mode I fracture toughness of K(1C) approximately 40 MPa m(1/2) were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K(1C) up to approximately 170 MPa m(1/2), and fracture energies for crack propagation as high as G(1C) approximately 340 kJ m(-2). The K(1C) and G(1C) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号