首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Threshold Shear Strain for Cyclic Pore-Water Pressure in Cohesive Soils   总被引:1,自引:0,他引:1  
Threshold shear strain for cyclic pore-water pressure, γt, is a fundamental property of fully saturated soils subjected to undrained cyclic loading. At cyclic shear strain amplitude, γc, larger than γt residual cyclic pore-water pressure changes rapidly with the number of cycles, N, while at γc<γt such changes are negligible even at large N. To augment limited experimental data base of γt in cohesive soils, five values of γt for two elastic silts and a clay were determined in five special cyclic Norwegian Geotechnical Institute (NGI)-type direct simple shear (NGI-DSS), constant volume equivalent undrained tests. Threshold γt was also tested on one sand, with the results comparing favorably to published data. The test results confirm that γt in cohesive soils is larger than in cohesionless soils and that it generally increases with the soil’s plasticity index (PI). For the silts and clay having PI=14–30, γt = 0.024–0.06% was obtained. Limited data suggest that γt in plastic silts and clays practically does not depend on the confining stress. The concept of evaluating pore water pressures from the NGI-DSS constant volume test and related state of stresses are discussed.  相似文献   

2.
This paper presents a study on the consequences of combining energy conservative or non-conservative elasticity within a plasticity framework. Toward this end, a versatile energy potential function is first presented and examined. It is shown to cover a wide range of existing empirical relations for pressure-dependent stiffness of soils. Utilization of these functions within hyperplastic constitutive framework allows for the resulting models to satisfy the Law of Energy Conservation for both elastic and plastic components of soil behavior. Apart from the theoretical rigor, a very important result of this approach is that it automatically implies stress-induced cross-anisotropy of the elastic component of soil behavior and dilatancy term occurs due to shear modulus dependency on pressure. Proper modeling of these phenomena, normally neglected by conventional hypoelastic-plastic models, has been shown to have a significant effect on the accuracy of the model predictions of undrained behavior of overconsolidated clays both in laboratory tests and in tunnel excavation problem.  相似文献   

3.
Failure Criterion for Cross-Anisotropic Soils   总被引:4,自引:0,他引:4  
Experimental evidence and analyses of results of three-dimensional (3D) tests show that the shape of the failure surface for soils is influenced by the intermediate principal stress, shear banding, and cross anisotropy. Presented here is a formulation of a general 3D failure criterion for cross-anisotropic soils for both nonrotating and rotating stresses. The formulation relates the loading direction to the principal directions of the cross-anisotropic microstructure of the soil. The criterion is based on a function of stress, previously used as the 3D failure criterion for isotropic frictional materials, which is set equal to a scalar that varies over a sphere. The formulation is specialized for true triaxial tests and torsion shear tests and determination of material parameters is demonstrated. The failure criterion for cross-anisotropic soils is compared with experimental results from the literature to show that it is able to capture the conditions obtained in true triaxial tests without stress rotations as well as the conditions in torsion shear tests performed to study effects of stress rotation. Sets of data from some classic true triaxial tests are reinterpreted to show their true cross-anisotropic behavior.  相似文献   

4.
Clay material can be considered as a collection of clusters, which interact with each other mainly through mechanical forces. From this point of view, clay is modeled by analogy to granular material in this paper. An elastoplastic stress-strain relationship for clay is derived by using the granular mechanics approach developed in previous studies for sand. However, unlike sand, clay deformation is generated not only by the mobilizing but also by compressing clusters. Thus, in addition to the Mohr-Coulomb’s plastic shear sliding and a dilatancy type flow rule, a plastic normal deformation has been modeled for two clusters in compression. The overall stress-strain relationship can then be obtained from the mobilization and compressing of clusters through a static hypothesis of the macro-micro relations. The predictions are compared with the experimental results for clay under both drained and undrained triaxial loading conditions. Three different types of clay, including remolded and natural clay, have been selected to evaluate the model’s performance. The comparisons verify that this model is capable of accurately reproducing the overall behavior of clay, which accounts for the influence of key parameters such as void ratio and mean stress. A section of this paper is devoted to show the model’s capability of considering the influence of inherent anisotropy on the stress-strain response under undrained triaxial loading conditions.  相似文献   

5.
Underground tunnels are considered to be a vital infrastructure component in most cities around the world. Careful planning is always necessary to ensure minimum impact on nearby surface and subsurface structures. This study describes the experimental investigation carried out to examine the effect of existing piles installed in cohesive soil and extended to bedrock on the circumferential stresses developing in a newly constructed tunnel supported by a flexible lining system. A small scale testing facility was designed and built to simulate the process of tunnel excavation and lining installation in the close vicinity of preinstalled model piles. Lining stresses were measured for different separation distances between the lining and the existing piles Consistent decrease in the lining load was observed when the piles are located within a distance of one tunnel diameter from the tunnel. The results presented in this study indicated that measuring the lining response near existing pile foundations may be used to evaluate the extent of the interaction between the lining and the surrounding piles.  相似文献   

6.
A procedure to identify the material parameters of an elastoplastic model is presented. It aims to predict uniaxial stress–strain curves in tension or compression. The Drucker–Prager model is chosen because of its simplicity. The procedure takes into account the hardening/softening regime by varying two physical parameters related to the model: the cohesion and the friction angle.  相似文献   

7.
Key Parameters for Strength Control of Artificially Cemented Soils   总被引:10,自引:0,他引:10  
Often, the use of traditional techniques in geotechnical engineering faces obstacles of economical and environmental nature. The addition of cement becomes an attractive technique when the project requires improvement of the local soil. The treatment of soils with cement finds application, for instance, in the construction of pavement base layers, in slope protection of earth dams, and as a support layer for shallow foundations. However, there are no dosage methodologies based on rational criteria as exist in the case of the concrete technology, where the water/cement ratio plays a fundamental role in the assessment of the target strength. This study therefore aims to quantify the influence of the amount of cement, the porosity and the moisture content on the strength of a sandy soil artificially cemented, as well as to evaluate the use of a water/cement ratio and a voids/cement ratio to assess its unconfined compression strength. A number of unconfined compression tests, triaxial compression tests, and measurements of matric suction were carried out. The results show that the unconfined compression strength increased linearly with the increase in the cement content and exponentially with the reduction in porosity of the compacted mixture. The change in moisture content also has a marked effect on the unconfined compression strength of mixtures compacted at the same dry density. It was shown that, for the soil-cement mixture in an unsaturated state (which is usual for compacted fills), the water/cement ratio is not a good parameter for the assessment of unconfined compression strength. In contrast, the voids/cement ratio, defined as the ratio between the porosity of the compacted mixture and the volumetric cement content, is demonstrated to be the most appropriate parameter to assess the unconfined compression strength of the soil-cement mixture studied.  相似文献   

8.
This paper presents the specification and estimation of a model based on the mechanistic empirical Pavement Design Guide (PDG) for estimating resilient modulus of fine-grained soils by using common soil parameters and by combining two different data sources: a database developed with Hawaiian fine-grained soils and data extracted from the Long Team Pavement Performance database for fine-grained subgrade soils. Two statistical techniques are combined to estimate the model parameters: joint estimation and mixed effects. Joint estimation considers multiple databases and allows identification of influential parameters that may be present only in some but not all databases whereas the mixed-effects statistical estimation approach is used to account for the within-group correlation between observations. The general structure of the PDG model is found acceptable if an allowance is made for the compaction level in addition to the saturation level in the PDG sigmoidal function. The resulting model contains parameters that are statistically significant and is more robust in that it can be used under a wider range of conditions than would have been possible if only one data source was available.  相似文献   

9.
Stress Path Testing of an Anisotropic Sandstone   总被引:1,自引:0,他引:1  
The Berea sandstone used in this study is transversely isotropic with respect to elastic response, with P-wave velocities of 2,160?m/s normal to bedding and 2,290?m/s parallel to bedding, a variation of only 6%. Triaxial compression and extension tests involving failure by loading and unloading were performed along the two directions of symmetry. With axial stress applied parallel to bedding, the internal friction angle was approximately 55° for compression and extension, indicating no intermediate stress effect for the linear Mohr-Coulomb criterion. However, for axial stress normal to bedding, the friction angle in compression was 50°, whereas in extension it was 44°. This anomalous behavior was attributed to strength anisotropy of the sandstone.  相似文献   

10.
11.
Suction Caisson Capacity in Anisotropic, Purely Cohesive Soil   总被引:1,自引:0,他引:1  
This paper presents a plastic limit analysis of the lateral load capacity of suction caissons in an anisotropic, purely cohesive soil assuming conditions of rotational symmetry about the vertical or gravity axis. The formulation utilizes a form of the Hill yield criterion that is modified to allow for different soil strengths in triaxial compression and extension. Using this yield criterion, energy dissipation relationships are formulated for continuous and discontinuous deformation fields. These dissipation relationships are then applied to a postulated caisson failure mechanism comprising a wedge near the free soil surface (mudline), a two-dimensional flow-around failure at depth, and a hemispherical slip surface at the base of the rotating caisson. The plastic limit analysis predictions compared favorably to predictions obtained from finite-element simulations employing a Hill yield criterion. For the range of anisotropic undrained strength properties commonly reported for normally K0-consolidated clays, parametric studies indicate that suction caisson horizontal load capacities predicted using a conventional approach (a von Mises yield surface fitted to the soil simple shear strength) will differ from anisotropic predictions by less than 10%.  相似文献   

12.
Damage to bridge crossings during flood events endangers the lives of the traveling public and causes costly disruptions to traffic flow. The most common causes of bridge collapse are scouring of the streambed and banks and erosion of highway embankments. This study couples a synthetic river flow simulation technique with a scour model for cohesive soils and determines the expected scour depth for a given lifetime of the bridge. A fractionally differenced autoregressive integrated moving average model generates synthetic streamflow sequences of the same length as the expected lifetime of the bridge. The scour model predicts the progression of scour depth through time in a multilayered soil. The model is used to determine the scour depth associated with different replicates of the synthetic flow sequences of the same length as the lifetime of the bridge. The probability distribution of scour depth is estimated by repeating this simulation procedure over a number of independent realizations of streamflow series for a given life of the bridge. This approach provides a framework for the probabilistic design and risk analysis of bridge foundations subjected to scour.  相似文献   

13.
The problem of cavity expansion from zero radius has no characteristic length and therefore possesses a similarity solution, in which the cavity pressure remains constant and the continuing deformation is geometrically self‐similar. In this case, the incremental velocity approach first used by Hill [7] to analyze cavity expansion in Tresca materials may be extended to derive a solution for limiting pressure of cavity expansion in Mohr‐Coulomb materials. An analytical solution for cavity limit pressures in Mohr‐Coulomb materials was suggested by Carter et al. [2]. However, the solution of Carter et al. may only be regarded as approximate since the convected part of the stress rate was neglected in their derivation. By including the convected part of the stress rate, Collins and Wang [4] later derived a semi‐analytical similarity solution for cavity expansion in purely frictional soils. The solution of Collins and Wang [4] was, however, obtained from numerical integration as their solution could not be expressed in explicit form. In this article, a rigorous closed‐form solution is derived for the expansion of cavities from zero initial radius in cohesive‐frictional soils. The solution procedure adopted here follows the Hill incremental velocity method, which is different from that used by Collins and Wang [4]. In particular, the plastic radius c is used in this article as the time scale. Unlike the solution of Collins and Wang [4], it is shown that by using a series expansion the similarity solution can be expressed in closed form.  相似文献   

14.
To evaluate roller-integrated machine drive power (MDP) technology for predicting the compaction parameters of cohesive soils considering the influences of soil type, moisture content, and lift thickness on machine power response, a field study was conducted with 15-m test strips using three cohesive soils and several nominal moisture contents. Test strips were compacted using a prototype CP-533 static padfoot roller with integrated MDP technology and tested using various in situ compaction measurement devices. To characterize the roller machine-soil interaction, soil testing focused on measuring compaction parameters for the compaction layer. Variation in both MDP and in situ measurements was observed and attributed to inherent variability of the compaction layer and measurement errors. Considering the controlled operations to create relatively uniform conditions of the test strips, measurement variability observed in this study establishes a baseline for acceptable variation in production operations using MDP technology in cohesive soils. Predictions of in situ compaction measurements from MDP were found to be highly correlated when moisture content and MDP-moisture interaction terms were incorporated into regression models.  相似文献   

15.
It is well established that critical state soil mechanics provides a useful theoretical framework for constitutive modeling of soil. Most of the critical state models, including the popular modified Cam clay (MCC) model, predict soil behavior in the subcritical region fairly well. However, the predictions for heavily overconsolidated soils, in the supercritical region, are not so satisfactory. Furthermore, the critical state models were developed from triaxial test data and extension of these models into three-dimensional (3D) stress space has not been investigated thoroughly. In the present work, experiments were carried out to obtain stress–strain behavior of overconsolidated soil in triaxial compression, extension, and plane strain conditions. A novel biaxial device has been developed to conduct the plane strain tests. The experimental results were used to formulate Hvorslev–MCC model which has MCC features in the subcritical region and Hvorslev surface in the supercritical region. The model was generalized to 3D stress space using the Mohr–Coulomb failure criterion. A comparison of the model predictions with test results has indicated that the Hvorslev–MCC model performs fairly well up to the peak supercritical point, during which deformations are fairly uniform and the specimens remain reasonably intact. Limitations of this simple model in predicting postpeak localization are also discussed. The model’s predictions for volumetric response in different shear modes seem to agree reasonably well with test results.  相似文献   

16.
This paper presents a new three-dimensional (3D) anisotropic elastic viscoplastic (EVP) model for the time-dependent stress–strain behavior of K0-consolidated marine clays. A nonlinear creep function with a limit for the creep volumetric strain under an isotropic or odometer K0-consolidated stressing condition and a nonsymmetrical elliptical loading locus are incorporated in the 3D anisotropic EVP model. An α-line defines the inclination of the nonsymmetrical elliptical loading locus in the p′-q plane and is commonly used for natural soils. All model parameters are determined from the results of one set of consolidated undrained compression tests and an isotropic consolidation/creep test. With the parameters determined, the 3D anisotropic EVP model is used to simulate the behavior of K0-consolidation tests and the strain-rate-dependent stress–strain behaviors of the K0-consolidated triaxial compression and extension tests on natural Hong Kong marine deposit clay specimens. These triaxial K0-consolidated specimens were sheared at step-changed axial strain rates from +2?to?+0.2, +20, ?2 (unloading) and +2%/h (reloading) for compression tests; or from ?2?to??0.2, ?20, +2 (unloading), and ?2%/h (reloading) for extension tests, all in an undrained condition. The simulation results of all these tests are compared with the test results. The validation and limitations of the model are then evaluated and discussed.  相似文献   

17.
In light of environmental differences (such as gravitational fields, surface temperatures, atmospheric pressures, etc.), the mechanical behavior of the subsurface soil on the Moon is expected to be different from that on the Earth. Before any construction on the Moon can be envisaged, a proper understanding of soil properties and its mechanical behavior in these different environmental conditions is essential. This paper investigates the possible effect of surface-energy forces on the shear strength of lunar soil. All materials, with or without a net surface charge, exhibit surface-energy forces, which act at a very short range. Although, these forces are negligible for usual sand or silty sand on Earth, they may be important for surface activated particles under extremely low lunar atmospheric pressure. This paper describes a constitutive modeling method for granular material considering particle level interactions. Comparisons of numerical simulations and experimental results on Hostun sand show that the model can accurately reproduce the overall mechanical behavior of soils under terrestrial conditions. The model is then extended to include surface-energy forces between particles in order to describe the possible behavior of lunar soil under extremely low atmospheric pressure conditions. Under these conditions, the model shows that soil has an increase of shear strength due to the effect of surface-energy forces. The magnitude of increased shear strength is in reasonable agreement with the observations of lunar soil made on the Moon’s surface.  相似文献   

18.
Characterization of Failure in Cross-Anisotropic Soils   总被引:3,自引:0,他引:3  
Drained true triaxial tests on dense Santa Monica Beach sand deposited with a cross-anisotropic fabric have been performed to study the failure condition in the principal stress space. The failure surface was assumed to be symmetric around the vertical axis (on the octahedral plane of the principal stress space), but varying as a function of the Lode angle. Data from previously performed consolidated-undrained true triaxial tests on San Francisco Bay Mud and data from triaxial compression, triaxial extension, and plane strain tests on Toyoura sand showed similar behavior in terms of effective stresses. A three-dimensional failure criterion is proposed for characterization of failure in cross-anisotropic soils, under commonly occurring conditions when loading and depositional directions coincide and no significant rotation of principal stresses occur. This cross-anisotropic criterion is developed using a coordinate rotation of the principal stress space and utilization of an existing isotropic failure formulation. Derivation of the three required parameters is explained and illustrated. The proposed criterion is compared with various experimental results; and it is demonstrated that the failure criterion for cross-anisotropic soils captures the experimental behavior with good accuracy.  相似文献   

19.
Mesoscale homogenization provides a computationally efficient way of capturing some degree of local variation in the behavior of a composite microstructure. In this work, techniques are explored in which the local two-phase microstructure is homogenized using the moving-window generalized method of cells (GMC) technique. Both elastic and plastic material behavior is investigated using GMC-generated anisotropic stress-strain curves. An optimization procedure is used to define Hill’s yield criterion parameters which best fit the GMC-generated data. Two perfectly plastic models are developed based on the GMC results; these are called the subcell initial yield model and the matrix average yield model. A technique is also developed which incorporates hardening behavior. Different windowing techniques are investigated: an overlapping windowing technique which requires more computational time, and a nonoverlapping technique which requires less computational time. It is found that the matrix average model using small nonoverlapping windows is the best technique in the cases studied, combining accuracy and computational efficiency.  相似文献   

20.
A constitutive model has been developed to capture the behavior of cross-anisotropic frictional materials. The elastoplastic, single hardening model for isotropic materials serves as the basic framework. Based on the experimental results of cross-anisotropic sands in isotropic compression tests, the principal stress coordinate system is rotated such that the model operates isotropically within the rotated framework. Experimental plastic work contours on the octahedral plane are plotted for a series of true triaxial tests on dense Santa Monica Beach sand to study the effects of cross anisotropy on the evolution of yield surfaces. The amount of rotation of the yield and plastic potential surfaces decreases to zero (isotropic state) with loading. The model is constructed for cases where the principal stress and material symmetry axes are collinear and no significant rotation of principal stresses occur. The model incorporates fourteen parameters that can be determined from simple experiments, such as isotropic compression, drained triaxial compression, and triaxial extension tests. A series of true triaxial and isotropic compression tests on dense Santa Monica Beach sand are used as a basis for verification of the capabilities of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号