首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explains how to use an arm robot experiment system to teach sampled‐data H control theory. A design procedure is presented for a digital tracking control system for a continuous plant with structured uncertainties; the target is the positioning control of an arm robot. To guarantee the robust stability of the closed‐loop system and provide the desired closed‐loop performance, the design problem is first formulated as a sampled‐data H control problem, and is then transformed into an equivalent discrete‐time H control problem. Finally, linear matrix inequalities are used to obtain a reduced‐order output‐feedback controller and a static state‐feedback controller. In a course, the design procedure is explained and practice is provided through simulations and experiments. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
A theoretical framework for active fault‐tolerant attitude stabilization control is developed and applied to flexible spacecraft. The proposed scheme solves a difficult problem of fault‐tolerant controller design in the presence of severe partial loss of actuator effectiveness faults and external disturbances. This is accomplished by developing an observer‐based fault detection and diagnosis mechanism to reconstruct the actuator faults. Accordingly, a backstepping‐based fault‐tolerant control law is reconfigured using the reconstructed fault information. It is shown that the proposed design approach guarantees that all of the signals of the closed‐loop system are uniformly ultimately bounded. The closed‐loop performance of the proposed control strategy is evaluated extensively through numerical simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A decentralized prescribed performance adaptive tracking control problem is investigated for Markovian jump uncertain nonlinear interconnected large‐scale systems. The considered interconnected large‐scale systems contain unknown nonlinear uncertainties, unknown control gains, actuator saturation, and Markovian jump signals, and the Markovian jump subsystems are in the form of triangular structure. First, by defining a novel state transformation with the performance function, the prescribed performance control problem is transformed to stabilization problem. Then, introducing an intermediate control signal into the control design, employing neural network to approximate the unknown composite nonlinear function, and based on the framework of the backstepping control design and adaptive estimation method, a corresponding decentralized prescribed performance adaptive tracking controller is designed. It is proved that all the signals in the closed‐loop system are bounded, and the prescribed tracking performances are guaranteed. A numerical example is provided to illustrate the effectiveness of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A new discrete‐time actuator failure compensation control scheme is developed, using a multiple‐model adaptive control approach which has the capacity to achieve faster and more accurate compensation of failure uncertainties. An individual adaptive system, for each possible failure pattern in a failure pattern set of interest for compensation, is designed using an indirect model reference adaptive control scheme for actuator failure compensation. A multiple‐model control switching mechanism for discrete‐time systems is set up by finding the minimal performance index to select the most appropriate control law. The performance indices are based on the adaptive estimation errors of individual parameterized systems with actuator failures. Simulation results from an aircraft flight control system example are presented to show the desired closed‐loop system stability and tracking performance despite the presence of uncertain actuator failures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A robust adaptive output‐feedback control scheme is proposed for a class of nonlinear systems with unknown time‐varying actuator faults. Additional unmodelled terms in the actuator fault model are considered. A new linearly parameterized model is proposed. The boundedness of all the closed‐loop signals is established. The desired control performance of the closed‐loop system is guaranteed by appropriately choosing the design parameters. The properties of the proposed control algorithm are demonstrated by two simulation examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Compared with the fault diagnosis, detection, and isolation literature, very few results are available to discuss control algorithms directly for multi‐input multi‐output nonlinear systems with both sensor and actuator faults in the fault tolerant control literature. In this work, we present a fault tolerant control algorithm to address the system output stabilization problem for a class of multi‐input multi‐output nonlinear systems with both parametric and nonparametric uncertainties, subject to sensor and actuator faults that can be both multiplicative and additive. All elements of the sensor measurements and actuator components can be faulty. Besides, the control input gain function is not fully known. Backstepping method is used in the analysis and control design. We show that under the proposed control scheme, uniformly ultimate boundedness of the system output is guaranteed, while all closed‐loop system signals stay bounded. In the cases where the sensor faults are only multiplicative, exponential convergence of the system state variables into small neighbourhoods around zero is guaranteed. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme.  相似文献   

7.
In this paper, the problem of anti‐disturbance asymptotical tracking control is studied for nonaffine systems with high‐order mismatched disturbances. The disturbances can be described as polynomial functions, which are first estimated by constructing generalized extended state filter. The nonaffine system is changed into an augmented affine system via introducing an auxiliary integrator. A novel adaptive anti‐disturbance tracking controller is recursively designed, where the disturbance estimation is used for feedforward compensation at each step. A sliding mode differentiator is applied to reduce the computational burden taken by the backstepping method. The boundedness of the closed‐loop system is proved based on Lyapunov stability theory and zero error tracking performance is ensured. Finally, a numerical example is provided to show the effectiveness of the proposed scheme.  相似文献   

8.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a robust active fault‐tolerant control (AFTC) approach for medium‐scale unmanned autonomous helicopter (UAH) with rotor flapping dynamics in the presence of unknown external disturbances and actuator faults. The robust items are adopted to improve the disturbance rejection capability of the UAH system. The adaptive fault observers are developed to estimate the fault parameters and the fault detection (FD) algorithms are presented to detect the actuator faults in different loops. In order to obtain satisfactory trajectory tracking performance, a backstepping‐based robust AFTC scheme is designed for the simplified 6‐degree‐of‐freedom (DOF) UAH nonlinear dynamics model and the global stability of the closed‐loop system is proved by using the Lyapunov method. Several groups of numerical simulation results are carried out to verify the effectiveness of the developed method.  相似文献   

10.
This paper investigates the problem of adaptive multi‐dimensional Taylor network (MTN) decentralized tracking control for large‐scale stochastic nonlinear systems. Minimizing the influence of randomness and complex nonlinearity, which increases computational complexity, and improving the controller's real‐time performance for the stochastic nonlinear system are of great significance. With combining adaptive backstepping with dynamic surface control, a decentralized adaptive MTN tracking control approach is developed. In the controller design, MTNs are used to approximate nonlinearities, the backstepping technique is employed to construct the decentralized adaptive MTN controller, and the dynamic surface control technique is adopted to avoid the “explosion of computational complexity” in the backstepping design. It is proven that all the signals in the closed‐loop system remain bounded in probability, and the tracking errors converge to a small residual set around the origin in the sense of a mean quartic value. As the MTN contains only addition and multiplication, the proposed control method is more simplified and of good real‐time performance, compared with the existing control methods for large‐scale stochastic nonlinear systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed design approach, and simulation results demonstrate that the method presented in this paper has good real‐time performance and control quality, and the dynamic performance of the closed‐loop system is satisfactory.  相似文献   

11.
A direct adaptive nonlinear tracking control framework for multivariable nonlinear uncertain systems with actuator amplitude and rate saturation constraints is developed. To guarantee asymptotic stability of the closed‐loop tracking error dynamics in the face of amplitude and rate saturation constraints, the control signal to a given reference (governor or supervisor) system is modified to effectively robustify the error dynamics to the saturation constraints. Illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A closed‐loop control system is commonly used in electromagnetic actuators to ensure operating performance. However, this system frequently leads to high costs. We developed a swing electromagnetic actuator with an integrated eddy current brake to reduce the operating time and improve the stopping accuracy. The developed actuator is a three‐position cylindrical actuator moving within a ±120º angle without closed‐loop control. The rotor is composed of a bulk and thin metal laminations and the stator has three sets of pairs of coils. The rotor is stopped at an intermediate position by magnetic force generated by the coils. This paper describes the electromagnetic design and its evaluation by using an FEM simulation to predict its operating characteristics and measure its performance on a test bench. The superiority of our actuator design is verified by comparing these measurements. The operating time is reduced to one‐sixth of that of a laminated rotor and the over travel is compressed to zero. In addition, this actuator has the advantage that it is electrically robust against variations in the power supply.  相似文献   

13.
This paper addresses a tracking problem for uncertain nonlinear discrete‐time systems in which the uncertainties, including parametric uncertainty and external disturbance, are periodic with known periodicity. Repetitive learning control (RLC) is an effective tool to deal with periodic unknown components. By using the backstepping procedures, an adaptive RLC law with periodic parameter estimation is designed. The overparameterization problem is overcome by postponing the parameter estimation to the last backstepping step, which could not be easily solved in robust adaptive control. It is shown that the proposed adaptive RLC law without overparameterization can guarantee the perfect tracking and boundedness of the states of the whole closed‐loop systems in presence of periodic uncertainties. In addition, the effectiveness of the developed controller is demonstrated by an implementation example on a single‐link flexible‐joint robot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the model reference control problem, which is a typical control problem found in data‐driven controller tuning methods. For nonminimum phase plants, the unstable zeros of the plant should be included in the reference to avoid destabilization of the resulting closed‐loop system and improve tracking performance. First, we propose a data‐driven controller tuning method with closed‐loop stability taken into consideration and with the tuned controller parameters in the time domain. If the plant has unstable zero(s), the proposed method would not lead to destabilizing controller in the worst case. Closed‐loop stability is checked using linear inequalities described with input/output data. This contributes to reducing computation in the proposed method. Moreover, this paper proposes a data‐driven controller tuning method for nonminimum phase plants estimating the unstable zero(s) using a flexible reference model at each parameter update and reflecting them into the resulting reference model. The effectiveness of the proposed method is confirmed through numerical experiments.  相似文献   

16.
In order to improve the transient and static performances of an engine speed control system in a wide speed range, this paper presents an adaptive double closed‐loop control strategy. The control scheme possesses intake manifold pressure inner closed‐loop adaptive proportional‐integral control and engine speed outer closed‐loop adaptive proportional‐integral control for achieving the tracking precision in a wide range of speed, as well as adaptive nonlinearity and feedforward compensators for overcoming parameter uncertainty and nonlinearity. The whole closed‐loop system's stability and the speed tracking convergence are ensured theoretically by the Lyapunov stability theory and the LaSalle invariant principle. The effectiveness of the proposed control strategy is validated through the operation results on the simulator of a V6 engine exploited by the Research Committee of the Society of Instrument and Control Engineers of Japan.  相似文献   

17.
An adaptive homo‐backstepping control for nonlinear strict‐feedback systems subjected to unknown actuator dead‐zone and disturbance is investigated. A sliding‐mode‐based integral filter is constructed and used to approximate the desired feedback control in the backstepping‐like recursive design technique. Subsequently, the problem of “explosion of complexity” is solved by obviating the analytic derivatives deduction for virtual control in the conventional backstepping technology. The actuator dead‐zone dynamic is modeled as the combination of a line and a disturbance‐like term, which makes the controller design simpler. The interconnected control module and filter module in the resulting closed‐loop system satisfy the input‐to‐state practically stability‐modularity condition, provided that the small‐gain theorem is exploited to ensure the stability of closed‐loop system. The proposed approach cannot only mitigate the effect of dead‐zone but also solve the problem of explosion of complexity in the previous literature. Numerical simulations performed on a manipulator with a brushed DC motor are introduced to illustrate the effectiveness of underlying control scheme.  相似文献   

18.
This paper investigates the active fault tolerant control problem via the H state feedback controller. Because of the limitations of Markov processes, we apply semi‐Markov process in the system modeling. Two random processes are involved in the system: the failure process and the fault detection process. Therefore, two corresponding semi‐Markov processes are integrated in the closed‐loop system model. This framework can generally accommodate different types of system faults, including the randomly happening sensor faults and actuator faults. A controller is designed to guarantee the closed‐loop system stability with a prescribed noise/disturbance attenuation level. The controller can be readily solved by using convex optimization techniques. A vertical take‐off and landing vehicle example with actuation faults is used to demonstrate the effectiveness of the proposed technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers the problem of partial tracking errors constrained for high‐order nonlinear multi‐agent systems in strict‐feedback form. In the control design, radial‐based function neural networks are utilized to identify uncertain nonlinear functions, and a cooperative adaptive dynamic surface control is proposed to avoid the explosion of complexity in the backstepping technique. Based on the minimal learning parameter technique and the predefined performance approach, a novel cooperative adaptive neural network control method is developed. The proposed controller is able to guarantee that all the closed‐loop network signals are cooperative semi‐globally uniformly ultimately bounded, and partial tracking errors confine all times within the predefined bounds. Finally, simulation example and comparative example with previous methods are given to verify and clarify the effectiveness of the new design procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号