首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

We report new zircon U–Pb ages, Hf isotopic and geochemical results for the Tongling granitic plutons of Southeast China. SHRIMP U–Pb ages for the Miaojia quartz monzodiorite porphyrite,the Tianebaodan and Tongguanshan quartz monzodiorites, the Xinqiaotou granodiorite porphyry, and the Shatanjiao and Nanhongchong granodiorite are 143 ± 2, 141 ± 1 and 142 ± 1, 147 ± 1, and 145 ± 1 and 139 ± 1 Ma, respectively. Combined with previous geochronological data, our results indicate that the porphyritic rocks are older than rocks of the same type lacking porphyritic texture. Geochemically, these high-K calc-alkaline intrusive rocks are characterized by arc-like trace element distribution patterns, with significant enrichment in LILE and LREE but depletion in HFSE. Lu–Hf isotopic compositions of zircons from the high-K calc-alkaline (HKCA) rocks have εHf(t) values of magmatic 139–147 Ma zircons from ?8.1 to ?25.6, with two-stage model ages (tDM2) of 1.71–2.67 Ga, whereas εHf(t) values of inherited 582–844 Ma zircons range from 5.4 to ?9.5, with tDM2 of 1.39–2.22 Ma, younger than tDM2 values of igneous zircon, indicating that newly formed mantle material was added to the continental crust of the Yangtze Block. Moreover, εHf(t) values of inherited zircon cores older than 1000 Ma are from ?7.8 to ?26, similar to magmatic zircons, and the tDM2 values are all greater than 3.0 Ga (3.16–3.75 Ga), reflecting partial melting of ancient sialic material. We conclude that the plutonic melts were derived from both the enriched mantle and the ancient crust. The HKCA Tongling intrusions coincide temporally with the J3–K1 magmatic event that was widespread in Southeast China. This igneous activity may have accompanied sinistral slip along the Tan-Lu fault due to oblique subduction of the Palaeo-Pacific plate.  相似文献   

2.
The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U–Pb and Lu–Hf data on TTG (tonalite–trondhjemite–granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450–1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from −11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120–130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from −30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.  相似文献   

3.
ABSTRACT

Large-scale Cu–Au mineralization is associated with Late Mesozoic intrusive rocks in the Tongling region of eastern China, which mainly comprise pyroxene monzodiorite, quartz monzodiorite, and granodiorite. To constrain the petrogenesis of the intrusive rocks and Cu–Au mineralization, detailed analyses of the geochronology, apatite in situ geochemistry, whole-rock geochemistry, and zircon Hf isotopic compositions were performed. Magmatic zircons from pyroxene monzodiorites, quartz monzodiorites, and granodiorites yield U–Pb ages of 136–149 Ma, 136–146 Ma, and 138–152 Ma, respectively, indicating that their formation ages are contemporaneous. Quartz monzodiorites and granodiorites (SiO2 = 57.9–69.5 wt.%) are highly potassic calc-alkaline rocks with adakitic affinity and have low MgO and Y contents, low zircon εHf(t) values (?11.7 to ?39.0), high apatite Cl contents (>0.2 wt.%), and log fO2 values (?23.2 to ?8.23), indicating that they may have formed when metasomatized mantle-derived magmas mixed with slab-derived magmas before undergoing crustal assimilation and fractional crystallization. Pyroxene monzodiorites (SiO2 = 48.4–53.0 wt.%) are shoshonitic and record high MgO, P2O5, and Y contents, high zircon εHf(t) values (1.55 to ?7.87), high oxygen fugacity, low Nb and Ta contents, and low apatite Cl contents (mainly <0.2 wt.%), suggesting that they were primarily derived from a metasomatized lithospheric mantle-derived magma that experienced the assimilation of lower crustal materials. The results indicate that the intrusive rocks and associated large-scale Cu–Au mineralization of the Tongling region resulted from the partial melting of the subducted oceanic slab in an oxidizing environment.  相似文献   

4.
The Laojiagou Mo deposit is a newly discovered porphyry Mo deposit located in the Xilamulun Mo metallogenic belt, Northeast China. Mo mineralization mainly occurred within the monzogranite and monzogranite porphyry. Re–Os isochron dating of molybdenites indicate a mineralization age of 234.9 ± 3.1 Ma. Zircon LA–ICP–MS U–Pb analysis for monzogranite porphyry and monzogranite yield 206Pb/238U ages of 238.6 ± 1.8 and 241.3 ± 1.5 Ma, respectively, indicating that Laojiagou Mo mineralization is related to Middle Triassic magmatism. Hf isotopic compositions of zircons from both monzogranite porphyry and monzogranite are characterized by positive εHf(t) values [εHf(t) = 2.9–7.3 and 1.5–7.9, respectively] and young TDM2 model ages, which implies that the magma was derived from juvenile crust created during accretion of the Central Asian Orogenic Belt (CAOB). Identification of the Laojiagou Mo deposit adds another important example of Triassic Mo mineralization in the Xilamulun Mo metallogenic belt where most Triassic Mo deposits in northeast China cluster around the northern margin of North China Craton. Based on the regional geological setting and geochronological and Hf isotope characteristics, we propose that Triassic Mo deposits and related magmatic rocks in northeast China formed during the last stages of evolution of the CAOB. These deposits formed during post-collisional extension after the closure of the Palaeo-Asian Ocean and amalgamation of the North China–Mongolian Block with the Siberian Craton.  相似文献   

5.
Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (εHf values) increases with decreasing zircon Ti content and falling temperature (T), suggesting gradually increasing incorporation of relatively high εHf juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon εHf and zircon δ18O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high εHf and low δ 18O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-T, high-εHf and low- δ 18O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ± 6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.  相似文献   

6.
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.  相似文献   

7.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

8.
ABSTRACT

The Beihuaiyang Zone (BHY) is one of the most important Mo–Pb–Zn polymetallic metallogenic belts in China, and the BHY deposits are genetically and geographically associated with Cretaceous magmatic rocks. In this article, we present new zircon U–Pb ages and Hf isotope data, whole-rock major and trace-element analytical results, and Sr–Nd–Pb isotope data for the granite porphyry of the Shapinggou (SPG) Mo deposit and the quartz monzonite porphyry of the Gongdongchong (GDC) Pb–Zn deposit. The high contents of SiO2, crust-like rare-earth-element and trace element patterns, and the enriched Sr–Nd–Pb–Hf isotopic compositions indicate that both porphyries originated from crustal melting. Inherited Neoproterozoic zircons are common in both porphyries, which implies that their crustal sources were the South China Block rather than the North China Block. Whole-rock εNd(t) values (?10.8 to ?9.8 for the GDC deposit, ?12.9 to ?12.4 for the SPG deposit) and zircon εHf(t) values (?14.3 to ?11.1 for the GDC deposit, ?18.4 to ?13.3 for the SPG deposit) for the ore-bearing rocks are significantly higher than the values found in the widespread and older ore-barren rocks, indicating that the magma sources of the ore-bearing rocks were younger than those of the ore-barren rocks. An integrated study of the Sr–Nd–Pb–Hf isotope contents shows that these younger source rocks are similar to the gneisses found in the South and Central Dabie units, which represent the upper crust of the subducted South China Block. Given the geochemical behaviour of molybdenum, a surface enrichment process would have been an essential prerequisite for the formation of the large Mo deposit. The early Paleozoic Mo–Pb–Zn-enriched black shales, which are widespread in the upper layers of the South China Block, might have been scraped off during Triassic subduction and then transported to deep-crustal levels below the BHY, thus forming an ideal source for the ore-bearing porphyries. An upper-crustal origin for the ore-bearing magmatic rocks is also consistent with the data for most other deposits distributed in the BHY of the Dabie Orogen.  相似文献   

9.
Any knowledge about Archaean to Palaeoproterozoic magmatic and metamorphic events in North Korea has the potential to make a significant difference to our understanding of the early tectonic configuration and evolution of East Asia. This zircon U–Pb dating and Hf isotopic study documents multiple Neoarchaean to Palaeoproterozoic tectonothermal events from the meta-igneous complex in the Machollyong ‘Group’ of the Rangnim Massif. Two tonalitic-trondjemitic gneiss samples record a crystallization age of meta-igneous protoliths at ca. 2.56 Ga and multiple migmatization and metamorphism from 2.52 to 1.85 Ga. A meta-dolerite sample yields a magmatic emplacement age of ca. 1.83 Ga. In situ zircon Hf isotopic data indicate that most zircons from the gneiss samples have εHf(t) values from –16.9 to + 3.1 and crustal model ages from 2.84 to 3.73 Ga, whereas magmatic zircons from the meta-dolerite dike record εHf(t) values from –5.2 to + 5.2 and model ages of 2.05–2.44 Ga. The first-recognized Neoarchaean tonalitic-trondjemitic migmatite complex in the Rangnim Massif, together with previously identified tonalitic-trondhjemitic-granodioritic (TTG) rocks in the Rimjingang Belt and the coeval counterparts in western Gyeonggi massif, represents the oldest crustal nuclei in the Korean Peninsula. The multiple tectonothermal events in this study present reliable evidence not only for attesting to consanguinity of the basement between the Korean Peninsula and the North China Craton but also for defining the influence scope of the late Palaeoproterozoic orogeny in the Korean Peninsula.  相似文献   

10.
The Renjiayingzi intermediate-acid pluton is located along a pre-existing ENE–WSW-trending dextral shear zone that forms part of the Xar Moron suture zone that marks the final closure of the Paleo-Asian Ocean. The pluton is composed of three small intrusions, which from northwest to southeast, are named the Shuangjianshan (SI), the Qianweiliansu (QI) and the Xingshuwabeishan (XI) intrusions. LA-ICPMS zircon U–Pb dating of a pyroxene diorite from the SI yields an age of 138 ± 1 Ma; the SHRIMP zircon U–Pb age of a tonalite from the QI records an age of 134 ± 2 Ma, whereas LA-ICPMS zircon U–Pb dating of a monzogranite from the XI has an age of 126 ± 1 Ma, suggesting the entire pluton was built up by three separate emplacement events that young to the ESE: this is further supported by the contact relations. Incremental growth of plutons by amalgamation of repeated small magma pulses is the most viable emplacement model. The pluton was probably emplaced by updoming of the roof along previous tensile fractures and by upward stacking of the three intrusions. The SI and QI have similar U–Pb ages and geochemical characteristics, and most likely had the same magma source and underwent similar petrogenetic processes. They have high MgO concentrations at low silica contents, are enriched in large ion lithophile elements, depleted in high field strength elements, have negative εNd(t) values of −1.8 to −3.7, with Nd model ages of 1.07–1.19 Ga. Pyroxene diorites of the SI also have variable zircon εHf(t) values (from −0.8 to +6.1), indicating that they were mainly derived from juvenile crust with minor crustal contamination and clinopyroxene-dominated fractional crystallization. The late monzogranites from the XI show weak negative εNd(t) values of −2.3 to −2.5, young Nd model ages of 0.99–1.00 Ga, positive zircon εHf(t) values (+1.3 to +4.6) and higher SiO2 and K2O contents, with strong depletion in Eu, P and Ti, indicating derivation from a distinct petrogenetic process from the two earlier intrusions. The monzogranites were the result of partial melting of juvenile crust in response to mantle-derived magma underplating, together with plagioclase-dominated fractional crystallization.  相似文献   

11.
The Baer ophiolitic massif is located in the northern sub-belt of the western segment of the Yarlung Zangbo Suture Zone (YZSZ) and mainly consists of a lherzolite-dominant mantle suite, dolerite intrusions and limited crustal outcrops. The dolerites show sub-ophitic texture and light rare earth element-depleted chondrite-normalized rare earth element patterns similar to normal-mid-ocean ridge basalts (N-MORB); though, they display enrichments in fluid-mobile elements (Rb, Ba, and Sr) and marked depletions in Th and Nb. The U–Pb ages of several magmatic zircon grains recovered from two dolerite samples indicate that the intrusion of the dikes into the Baer lherzolitic mantle occurred at 125.6–126.3 Ma, consistent with the widespread mafic magmatism between 120 and 130 Ma in the Yarlung Zangbo ophiolites. The dolerites have slightly more radiogenic 87Sr/86Sr ratios (0.7043–0.7054) in comparison to N-MORB, whereas they show 143Nd/144Nd values (0.513067–0.513114) similar to N-MORB and high zircon Hf-isotope compositions. They have a limited range of Nd-isotope (εNd(t) values: +8.2 to +9.1) and juvenile Hf-isotope compositions (εHf(t) values: +8.4 to +14.2 and +10.0 to +15.1) indicating derivation from mantle melts. The moderate spread in the εHf (t) values of zircons indicates derivation of the dolerites parental magma from a weakly contaminated spinel-bearing mantle source. This is also corroborated by the geochemical signatures of the Baer dolerites (enrichment in LILE and depletion in HFSE) suggesting minor slab input to the mantle source of the dike-filling melt. We suggest that the genesis of the dolerite dike-forming melt happened at a stage of subduction initiation in a sub-oceanic mantle domain mildly affected by fluids emanating from the downgoing slab. Our data combined with literature data allow us to presume that the intrusion of the dolerites into the Baer mantle corresponds to an early phase of subduction initiation beneath a developing forearc basin.  相似文献   

12.
This study presents sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon ages, and whole-rock chemical and isotopic (Sr-Nd) compositions of representative Triassic plutons from South Korea. The plutons from the Gyeonggi massif (Hongseong, Namyang, Yangpyeong and Odesan), the central Okcheon belt (Baeknok and Yongsan), and the Yeongnam massif (Sangju, Gimcheon, Hamyang and Macheon) yield zircon U–Pb ages of ca. 232–226 Ma, 227–226 Ma, and 240–228 Ma, respectively. Among the Triassic plutonic suite in South Korea, those within the Gyeonggi massif are dominated by granite, syenite, monzonite, monzodiorite and gabbro. Plutons within the Okcheon belt are mainly by granite to quartz monzodiorite. The Yeongnam massif mainly incorporates granite to granodiorite and minor monzodiorite intrusions. The geochemical signatures of the Triassic plutons are characterized by Ta–Nb troughs, depletion of P and Ti, and enrichment of LILE. Most plutons except Macheon monzodioritic pluton show high initial 87Sr/86Sr ratios (0.708248–0.714678) and strongly negative εNd(T) (− 20.3 to − 7.7) values, suggesting contribution from middle to upper crust. In contrast, the Macheon monzodioritic pluton in the Yeongnam massif shows relatively low initial 87Sr/86Sr ratios (0.706547-0.706629) and negative εNd(T) (− 4.43 to − 3.62) values. The Middle Triassic syenite–monzonite–granite–gabbro series in and around the Gyeonggi massif possess high-K calc-alkaline and shoshonitic affinity suggesting a post-collisional magmatic event following the Permo–Triassic collision between the North and South China blocks. The Triassic plutons in the Yeongnam massif and the Okcheon belt, together with a Permian Yeongdeok pluton in the Gyeongsang basin, show features typical of high- to medium-K calc-alkaline magmatism with LREE and LILE enrichments. This together with a depletion of Y and HREE suggests their formation in a subduction setting. Our results provide robust evidence to consider the Gyeonggi massif as an extension of the Qinling–Dabie–Sulu belt between the North and South China blocks in central China. The Okcheon belt and Yeongnam massif in South Korea, together with the continental margin of South China, are marked by a common Permian to Triassic magmatic episode, probably related to the paleo-Pacific slab subduction.  相似文献   

13.
ABSTRACT

The Tiantang Cu–Pb–Zn polymetallic deposit in western Guangdong, South China, is hosted in the contact zone between the monzogranite porphyry and limestone of the Devonian Tianziling Formation. Orebodies occur in the skarn and skarnized marble as bedded, lenses, and irregular shapes. In this study, we performed LA-ICP-MS zircon U–Pb dating, zircon trace elements, and Hf isotopic analyses on the Tiantang monzogranite porphyry closely related to Cu–Pb–Zn mineralization. Twenty-two zircons from the sample yield excellent concordia results with a weighted mean 206Pb/238U age of 104.5 ± 0.7 Ma, which shows that the emplacement of the monzogranite porphyry in the Tiantang deposit occurred in the Early Cretaceous. The zircon U–Pb age is largely consistent with the sulphide Rb–Sr isochron ages, indicating that both the intrusion and Cu–Pb–Zn mineralization were formed during the Early Cretaceous in South China. The εHf(t) values of three inherited zircons from the monzogranite porphyry are 13.1, 11.9, and 12.9, respectively, and the two-stage Hf model ages are 1096 Ma, 1087 Ma, and 1055 Ma, respectively. Except for the three inherited zircons, all εHf(t) values of zircons are negative and have a range of ?7.6 to ?3.4, with the two-stage model ages (TDM2) of 1380–1643 Ma, which indicates the rock-forming materials were mainly derived from the partial melting of Mesoproterozoic to Neoproterozoic crust rocks, and probably included some Neoproterozoic arc-related volcanic-sedimentary materials. In this study, the monzogranite porphyry from the Tiantang deposit has calculated Ce4+/Ce3+ ratios of zircon ranging from 91 to 359, indicative of a more oxidized signature and significant prospecting potential for ore-related magmatism. Based on ore deposit geology, isotope geochemistry, and geochronology of the Tiantang Cu–Pb–Zn deposit and regional geodynamic evolution, the formation of Early Cretaceous magmatism and associated polymetallic mineralization in South China is believed to be related to large-scale continental extension and subsequent upwelling of the asthenosphere.  相似文献   

14.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

15.
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.  相似文献   

16.
1 Introduction Mesozoic volcano-intrusive rocks are widely distributed in the Da Hinggan Range of northeastern China, and are considered as one of the most spectacular geological sights in eastern Asia. Recently, studies on granites with high εNd(t) values and Phanerozoic crustal growth in the Centra Asian Orogenic Belt have greatly promoted fundamental research into the geology of this area (Jahn et al., 2000, 2001, 2004; Wu et al., 2000, 2002, 2003). However, work on the eruption time,…  相似文献   

17.
Northeast Asian continental margins contain the products of magma emplacement driven by prolonged subduction of the (paleo-)Pacific plate. As observed in many Cordilleran arcs, magmatic evolution in this area was punctuated by high-volume pulses amid background periods. The present study investigates the early evolution of the Cretaceous magmatic flare-up using new and published geochronological, geochemical, and O-Hf isotope data from plutonic rocks in the southern Korean Peninsula. After a long (~50 m.y.) magmatic hiatus and the development of the Honam Shear Zone through flat-slab subduction, the Cretaceous flare-up began with the intrusion of monzonites, granodiorites, and granites in the inboard Gyeonggi Massif and the intervening Okcheon Belt. Compared to Jurassic granitoids formed during the former flare-up, Albian (~111 Ma) monzonites found in the Eopyeong area of the Okcheon Belt have distinctly higher zircon εHf(t) (?7.5 ± 1.3) and δ18O (7.78‰ ± 0.25‰) values and lower whole-rock La/Yb and Sr/Y ratios. The voluminous coeval granodiorite and granite plutons in the Gyeonggi Massif are further reduced in Sr/Y and to a lesser extent, in La/Yb, and have higher zircon εHf(t) values (?13 to ?19) than the Precambrian basement (ca. ?30). These chemical and isotopic features indicate that Early Cretaceous lithospheric thinning, most likely resulting from delamination of tectonically and magmatically overthickened lithospheric keel that was metasomatized during prior subduction episodes, and consequent asthenospheric upwelling played vital roles in igniting the magmatic flare-up. The O-Hf isotopic ranges of synmagmatic zircons from the Albian plutons and their Paleoproterozoic and Jurassic inheritance attest to the involvement of lithospheric mantle and crustal basement in magma generation during this decratonization event. Arc magmatism then migrated trenchward and culminated in the Late Cretaceous, yielding widespread granitoid rocks emplaced at shallow crustal levels. The early Late Cretaceous (94–85 Ma) granites now prevalent in Seoraksan-Woraksan-Sokrisan National Parks are highly silicic and display flat chondrite-normalized rare earth element patterns with deep Eu anomalies. Synmagmatic zircons in these granites mimic their host rock’s chemistry. Delamination-related rejuvenation of crustal protoliths is indicated by zircon εHf(t) values of granites (?6 to ?20) that are consistently higher than the Precambrian basement value. Concomitant core-to-rim variation in zircon O-Hf isotopic compositions reflects a typical sequence of crustal assimilation and fresh input into the magma chamber.  相似文献   

18.
青藏高原南部拉萨地体晚三叠世-早侏罗世时期岩浆活动的地球动力学背景仍是尚待解决的一个重要科学问题。本文报道了南部拉萨地体西部打加错地区新发现的安山玢岩的锆石U-Pb年代学、Hf同位素和全岩地球化学数据。打加错安山玢岩主要由蚀变细粒斜长石、辉石和角闪石组成。2件样品的LA-ICP-MS锆石U-Pb定年结果分别为204±4Ma和203±2Ma,表明打加错地区在晚三叠世发生了安山质岩浆活动。结合近期报道的打加错地区辉石角闪二长闪长岩的年龄(207.3±3.6Ma)记录,表明南部拉萨地体西部打加错地区发生了晚三叠世岩浆活动。2件安山玢岩的锆石εHf(t)值多为正值(分别为-2.2~+8.8和-2.0~+10.7),可比于南部拉萨地体中东部其它地区同期岩浆记录的Hf同位素成分(如:工布江达南部203Ma正长花岗岩的锆石εHf(t)为-4.9~+2.7;日喀则东部约205Ma二长花岗岩的锆石εHf(t)为+11.9~+15.8),这表明南部拉萨地体晚三叠世岩浆活动从东工布江达向西延伸到打加错一带,东西延伸约800km。打加错地区2件安山玢岩样品(SiO2=56.1%~59.0%)以较低Mg#(45.8~48.7)和Al2O3含量(16.4%~17.0%)为特征,属于偏铝质钾玄质-高钾钙碱性火山岩。本文获得的新数据,结合最近报道的早侏罗世桑日群岩浆活动记录以及打加错地区上三叠统地层研究新进展,本文更赞成打加错地区和南部拉萨地体其它地区的晚三叠世岩浆活动形成于与班公湖-怒江洋壳南向俯冲有关的弧后环境。  相似文献   

19.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

20.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号