首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon nanotubes are synthesized on the silicon nanowire arrays which are fabricated on silicon substrate by chemical vapor depositing SiCl4 and H2 gases in the presence of Au catalysts. The silicon nanowires are single-crystal with lengths up to 100 μm and diameters ranging from 50 to 500 nm. The tangled carbon nanotubes are grown directly from the surface of Si nanowires. The field emission properties of the carbon nanotubes are investigated at the gap of 200 μm. The low turn on and threshold fields are obtained. The stabilization of the emission currents is also presented.  相似文献   

2.
ZnO nanowire arrays have been successfully synthesized on transparent quartz glass substrate by chemical vapor deposition technique. Our work demonstrates the critical role of the growth temperature and the buffer layer on the effective control of the morphology of ZnO nanowires. A proper growth temperature and the thicker buffer layer could promise the good alignment and high density of the nanowires. The room-temperature photoluminescence spectrum shows that the buffer layer has also great effects on optical properties of ZnO nanowire arrays. The integrated intensity ratio [IUV/IVisible band] of the ZnO UV emission peak to visible band emission decreases with the increase of the thickness of the buffer layers. The obtained nanowire arrays have transmittance of above 50% in the visible region.  相似文献   

3.
We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.  相似文献   

4.
Silicon nanowire (SiNW) arrays were fabricated on silicon wafers by the metal-assisted chemical etching method. Varied average diameters of SiNW arrays were realized through further treatment in a mixed agent of HF and HNO3 of certain concentrations. After the treatment, there were more than 93% SiNWs with diameters smaller than 100 nm. The tip of each SiNW was subsequently wrapped with multi-walled carbon nanotubes (MWCNTs) with chemical vapor deposition method. The as-fabricated MWCNT/SiNW arrays were fabricated into electric field emitters, with turn-on field of 2.0 V/μm (current density: 10 μA/cm2), much lower than that of SiNW array (5.0 V/μm). The turn-on electric field of MWCNT/SiNW array decreased with the decreasing of the average diameter of SiNWs, indicating the performance of the field emission is relative to the morphology of SiNWs. As the SiNW array is uniform in height and easy to fabricate, the MWCNT/SiNW array shows potential applications in flat electric display.  相似文献   

5.
R. S. Yang 《哲学杂志》2013,93(14-15):2097-2104
This paper reports on ZnO nanowires arrays synthesized using Sn as a catalyst. The Sn particles were produced from the reduction of SnO2 powders via a vapour-solid growth process. Control of growth conditions led to the formation of ZnO nanowire arrays, radial nanowire ‘flowers’ and uniaxial fuzzy nanowires. ZnO nanowire–nanobelt junctions were also grown by changing the growth direction. As-grown nanowire arrays could be fundamental materials for investigating physical and chemical properties at nano-scale dimensions.  相似文献   

6.
用一种低成本的方法制备出了树形结构Si/ZnO纳米线阵列。首先在室温条件下用金属辅助化学腐蚀法在Si(100)衬底上制备了Si纳米线阵列,Si纳米线的直径尺寸及分布都很均匀,通过改变腐蚀时间,能够得到高度不同的Si纳米线阵列。利用磁控溅射在Si纳米线表面制备一层ZnO薄膜,然后利用水热法在Si纳米线阵列上生长了ZnO纳米线。通过扫描电子显微镜(SEM)、能谱分析仪(EDS)和光致发光(PL)测试对样品进行了表征。通过这种方法制备的Si/ZnO复合结构在太阳能电池、光催化等领域有潜在应用价值。  相似文献   

7.
A low temperature synthesis of single crystalline Ge nanowires via chemical vapor deposition is enabled by balancing the feedstock and its diffusion in growth seeds. Understanding and optimizing the synthetic chemistry leads to deterministic nanowire growth at well-defined locations and bulk quantity production of homogeneous nanowires, both of which greatly facilitate the assembly toward parallel nanowire arrays. Surface chemistry studies reveal that p- and n-type Ge nanowires undergo different oxidation routes and the surface oxide induced states cause opposite band bending for nanowires with different doping. Furthermore, long chain alkanethiols form a dense and uniform protection layer on Ge nanowire surfaces and therefore afford excellent oxidation resistance. Finally, high performance field effect transistors are constructed on Ge nanowires with both thermally grown SiO2 and atomic layer deposited HfO2 as gate dielectrics. PACS 73.63.-b; 73.63.B6; 73.22.-f; 73.20.At; 73.90.+f  相似文献   

8.
Bi2SiO5 modified Si nanowire array films were fabricated as photo-catalysts via dip-coating Bi(NO3)3 on silver-assisted electroless wet chemical etching Si nanowires and subsequently annealing. The structures and morphologies of as-prepared samples are characterized by X-ray diffraction, Fourier transform infrared spectrum, scanning electron microscopy and transmission electron microscopy. The results of photocatalytic experiments indicated that the Bi2SiO5 modified Si nanowire arrays benefit the improvement for efficient electron-hole separation and photo-catalytic stability, thereby possessing superior photo-degradation performance. These hybrid nanowire arrays will be promising materials for photo-catalysts and degradation agents.  相似文献   

9.
Wavelength‐tunable light‐emitting diodes (LEDs) of GaxZn1–xO nanowire arrays are demonstrated by a simple modified chemical vapor deposition heteroepitaxial growth on p‐GaN substrate. As a gallium atom has similar electronegativity and ion radius to a zinc atom, high‐level Ga‐doped GaxZn1–xO nanowire arrays have been fabricated. As the x value gradually increases from 0 to 0.66, the near‐band‐edge emission peak of GaxZn1–xO nanowires shows a significant shift from 378 nm (3.28 eV) to 418 nm (2.96 eV) in room‐temperature photoluminescence (PL) measurement. Importantly, the electroluminescence (EL) emission of GaxZn1–xO nanowire arrays LED continuously shifts with a wider range (∼100 nm), from the ultraviolet (382 nm) to the visible (480 nm) spectral region. The presented work demonstrates the possibility of bandgap engineering of low‐dimensional ZnO nanowires by gallium doping and the potential application for wavelength‐tunable LEDs.  相似文献   

10.
通过脉冲电沉积,外延生长出小单元长度的Bi2Te3/Sb超晶格纳米线.借助哈曼方法,测量了超晶格纳米线阵列的热电性能,330 K时的ZT值可达0.15.研究了Bi2Te3/Sb超晶格纳米线阵列器件的制冷或者加热能力,发现器件的上下表面的最大温差可以达到6.6 K.  相似文献   

11.
Silicon wafers coated with a film of Ag pattern are used for investigating roles of Ag in the fabrication of silicon nanowire arrays (SiNWs) by the electroless chemical etching technique. The diameter of SiNWs grown in the mixed AgNO3/HF solution ranges from 20 to 250?nm. A growth mechanism for such obtained SiNWs is proposed and further experimentally verified. As a comparison as well as to better understand this chemical process, another popular topic on growing SiNWs in the H2O2/HF solution is also studied. Originating from different chemical reaction mechanisms, Ag film could protect the underneath Si in the AgNO3/HF solution and it could, on the contrary, accelerate etching of the underneath Si in the H2O2/HF solution.  相似文献   

12.
This very paper is focusing on the preparation of porous nanostructures in n-type silicon (1 1 1) wafer by chemical etching technique in alkaline aqueous solutions of 5 M NaOH, 5 M K2CO3 and 5 M K3PO4, and particularly, on its ultraviolet-blue photoluminescence emission. The anodic chemical etched silicon wafer has been characterized by means of optical microscopy, scanning electron microscopy, fluorescence spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. This very surface morphology characterization has been clearly shown - the effect of anodic-chemical-etching procedure processed in K2CO3 or K3PO4 was much vigorous than that processed in NaOH. The FTIR spectra indicate that the silicon oxide was formed on the surface of electrochemical etched n-Si (1 1 1) wafers, yet not on that of the pure chemical etched ones anyhow. And an intense ultraviolet-blue photoluminescence emission is observed, which then differs well from the silicon specimen etched in alkaline solution with no anodic potential applied. The proper photoluminescence mechanism is discussed, and hence there may be a belief that the intense ultraviolet-blue photoluminescence emission would be attributed to the silicon oxide coating formed on silicon wafer in anodic-chemical-etching process.  相似文献   

13.
This paper reports a study of the application of chemical vapor-etching (CVE) for the rear surface and in the emitter of polycrystalline silicon (pc-Si) solar cells. The CVE technique consists of exposing pc-Si wafers to a mixture of HF/HNO3. This technique is used to groove the rear surface of the pc-Si wafers for acid vapors rich in HNO3 (HNO3/HF > 1/4), in order to realize rear-buried metallic contacts (RBMC) and the formation of a porous silicon (PS) layer on the frontal surface of the cell for volume ratio of HNO3/HF = 1/7. A significant increase of the spectral response in the long wavelength range was observed when a RBMC is formed. This increase was attributed to the reduction of the effective thickness of the base of the cells and grain boundary Al gettering. The achievement of a PS layer on the emitter of the pc-Si cells passivates the surface and reduces the reflectivity. The dark I-V characteristics of pc-Si cells with emitter-based PS show an important reduction of the reverse current together with an improvement of the rectifying behaviour. The I-V characteristic under AM1.5 illumination shows an enhancement of both short circuit current density and fill factor. The internal quantum efficiency is improved, particularly in the short wavelengths region.  相似文献   

14.
Ordered ZnO nanowire arrays have been fabricated in N2 background gas by catalyst-free nanoparticle-assisted pulsed-laser deposition. A single ZnO nanowire was collected in an electrode gap by dielectrophoresis. Under the optical pumping above an exciting laser (λ= 355 nm) threshold of ∼ 334 kW/cm2, ultraviolet lasing action in a single ZnO nanowire was observed at room temperature, indicating that the as-synthesized nanowires in pure N2 background gas are of high quality. The crystalline facets of both ends of the nanowire acted to form an optical cavity. Therefore, the mode spacings corresponding to cavity lengths of the respective nanowires were observed in photoluminescence spectra. PACS 78.66.Hf; 81.07.Bc; 78.67.-n; 81.16.Mk  相似文献   

15.
Aligned SiOx nanowire arrays standing on a Si substrate were successfully synthesized using a simple method by heating a single-crystalline Si slice covered with SiO2 nanoparticles at 1000 °C in a flowing Ar atmosphere. The SiOx nanowire arrays were characterized by scanning electron microscopy and transmission electron microscopy. The SiOx nanowires become progressively thinner from bottom to top. The formation process of the SiOx nanowire arrays is closely related to a vapor–solid mechanism. Room-temperature photoluminescence measurements under excitation at 260 nm showed that the SiOx nanowire arrays had a strong blue–green emission at 500 nm (about 2.5 eV), which may be related to oxygen defects. Received: 29 April 2002 / Accepted: 30 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-551-559-1434, E-mail: gwmeng@mail.issp.ac.cn  相似文献   

16.
The morphology of silicon nanowire (SiNW) layers formed by Ag-assisted electroless etching in HF/H2O2 solution was studied. Prior to the etching, the Ag nanoparticles were deposited on p-type Si(1 0 0) wafers by electroless metal deposition (EMD) in HF/AgNO3 solution at room temperature. The effect of etching temperature and silicon resistivity on the formation process of nanowires was studied. The secondary ion mass spectra (SIMS) technique is used to study the penetration of silver in the etched layers. The morphology of etched layers was investigated by scanning electron microscope (SEM).  相似文献   

17.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

18.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

19.
Herein we demonstrate an improved metal-assisted etching method to achieve highly dense and uniform silicon nanowire arrays. A pre-surface treatment was applied on a silicon wafer before the process of metal-assisted etching in silver nitrate and hydrogen fluoride solution. The treatment made silver ion continuously reduce on silver nuclei adherence on the silicon surface, leading to formation of dense silver nanoparticles. Silver nanoparticles acting as local redox centers cause the formation of dense silicon nanowire arrays. In contrast, an H-terminated silicon surface made silver ion reduce uniformly on the silicon surface to form silver flakes. The silicon nanowires fabricated with a pre-surface treatment reveals higher density than those fabricated without a pre-surface treatment. The volume fraction improves from 18 to 38%. This improvement reduces the solar-weighted reflectance to as low as 3.3% for silicon nanowires with a length of only 0.87 μm. In comparison, the silicon nanowires fabricated without a pre-surface treatment have to be as long as 1.812 μm to achieve the same reflectance.  相似文献   

20.
Ordered Fe2O3 nanowire arrays embedded in anodic alumina membranes have been fabricated by Sol–gel electrophoretic deposition. After annealing at 600 °C, the Fe2O3 nanowire arrays were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these Fe2O3 nanowires crystallize with a polycrystalline corundum structure. The optical absorption band edge of Fe2O3 nanowire arrays exhibits a blue shift with respect of that of the bulk Fe2O3 owing to the quantum size effect. PACS 78.67.Lt; 81.05.Je; 81.07.Vb  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号