首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In previous studies (A. Marais, J. M. Bove, and J. Renaudin, J. Bacteriol. 178:862-870, 1996), we have shown that the recA gene of Spiroplasma citri R8A2 was restricted to the first 390 nucleotides of the N-terminal part. PCR amplification and sequencing studies of five additional strains of S. citri have revealed that these strains had the same organization at the recA region as the R8A2 strain. In contrast to S. citri, Spiroplasma melliferum was found to contain a full-length recA gene. However, in all five S. melliferum strains tested, a TAA stop codon was found within the N-terminal region of the recA reading frame. Our results suggest that S. melliferum, as well as S. citri, is RecA deficient. In agreement with the recA mutant genotype of S. citri and S. melliferum, we have shown that these organisms are highly sensitive to UV irradiation.  相似文献   

2.
3.
4.
The sequences controlling the expression of the Rhodobacter capsulatus recA and uvrA genes belonging to the SOS DNA repair system have been identified by PCR mutagenesis. Data obtained demonstrated that the GTTCN7GTAC and GAACN7GAAC motifs present upstream of the recA gene and the GTTCN7GTTC motif found upstream of the uvrA gene are required for their respective DNA damage-mediated induction. Alignment of recA promoters of R. capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas viridis with the uvrA promoters of R. capsulatus and R. sphaeroides has identified the consensus sequence GTTCVYVYTWTGTTC as the SOS operator site of the Rhodospirillaceae family.  相似文献   

5.
The recA gene from the bacterium Xanthomonas oryzae pv. oryzae (Xoo), a rice pathogen, was cloned based on its ability to complement DNA repair defects of Escherichia coli recA- mutants. The Xoo recA was localized to a 1.3-kb Sau3AI-XhoI fragment and, when cloned into pBR322, specifies increased methylmethanesulfonate and mitomycin C resistance to E. coli recA mutants and allows lambda red- gam- to plaque on an E. coli recA- host. An E. coli recA- strain harboring a plasmid containing the Xoo recA-like gene was shown to produce a 40-kDa protein which cross-reacted with an anti-E. coli RecA antibody. A similar molecular mass protein to RecA has been detected in several Xanthomonas pathovars using an anti-E. coli RecA antibody. Furthermore, the cloned Xoo recA was shown to hybridize to genomic DNA from various Xanthomonas pathovars, but not to genomic DNA from other bacteria species under high-stringency hybridization conditions. These results indicate the isolation of the Xoo recA gene.  相似文献   

6.
7.
The recA gene of a thermophilic eubacterial strain, Thermus thermophilus (T.th.) HB8, was cloned from a genomic DNA library by Southern hybridization using a gene-internal fragment amplified by the polymerase chain reaction (PCR) method as the probe. The gene encoded a 36 kDa polypeptide whose amino acid sequence showed 61% identity with that of the Escherichia coli RecA protein. Characteristic amino acid changes between the two RecA proteins were found. In the amino acid composition of the T.th. RecA protein, the number of Pro residues was increased, the number of Cys residues was decreased, and Lys residues were replaced by Arg, Asp by Glu, Thr by Val, and Ile by Val or Leu. These changes are supposed to stabilize the native protein conformation against heat denaturation. The amino acid residues in the nucleotide binding site of the protein and in the protein-protein interaction site responsible for the oligomer formation were well conserved. The T.th. recA gene has the ability to complement the ultraviolet light (UV) sensitivity of a E. coli recA deletion mutant. Thus, the thermophilic bacterium has a RecA protein whose function will be common to the E. coli RecA protein.  相似文献   

8.
The paper presents the results of a study of UV-resistant revertants of some recA strains induced by different mutagens. It is shown that some of produced revertants differ from original recA strains in some properties. It is established that all UV-resistant revertant fall into three phenotypic groups on their recombination proficiency in crosses with different donor strains (Hfr C, Hfr 3.0SO, F' W1655) and in their sensitivity to UV and gamma-rays. It is concluded that all UVr revertants are rec A+ and carried mutations either in the same recA gene (true reversion or intragenic suppression) or in genes closely linked with recA.  相似文献   

9.
A DNA fragment containing the recA gene of Gluconobacter oxydans was isolated and further characterized for its nucleotide sequence and ability to functionally complement various recA mutations. When expressed in an Escherichia coli recA host, the G. oxydans recA protein could efficiently function in homologous recombination and DNA damage repair. The recA gene's nucleotide sequence analysis revealed a protein of 344 amino acids with a molecular mass of 38 kDa. We observed an E. coli-like LexA repressor-binding site in the G. oxydans recA gene promoter region, suggesting that a LexA-like mediated response system may exist in G. oxydans. The expression of G. oxydans recA in E. coli RR1, a recA+ strain, surprisingly caused a remarkable reduction of the host wild-type recA gene function, whereas the expression of both Serratia marcescens recA and Pseudomonas aeruginosa recA gene caused only a slight inhibitory effect on function of the host wild-type recA gene product. Compared with the E. coli RecA protein, the identity of the amino acid sequence of G. oxydans RecA protein is much lower than those RecA proteins of both S. marcescens and Pseudomonas aeruginosa. This result suggests that the expression of another wild-type RecA could interfere with host wild-type recA gene's function, and the extent of such an interference is possibly correlated to the identity of the amino acid sequence between the two classes of RecA protein.  相似文献   

10.
The feasibility of intragenerically characterizing bifidobacteria by a comparison of a short region within the recA gene was tested. An approximately 300 bp fragment of the recA gene was PCR-amplified from six species from the genus Bifidobacterium using primers directed to two universally conserved regions of the recA gene. A phylogenetic analysis of the sequenced recA products compared favorably to classification based on the 16S rRNA sequences of the species tested. To apply this rapid methodology to unknown human intestinal bifidobacteria, 46 isolates were randomly chosen from the feces of four subjects and initially characterized by RFLP analysis of a PCR-amplified region of their 16S RNA genes. From a representative of the dominant RFLP family in each of the subjects, the recA segment was PCR-amplified, sequenced and phylogenetically analyzed. All four isolates were found to be related to one another and to B. longum and B. infantis. These results illustrate that the recA gene may be useful for intrageneric phylogenetic analysis as well as for the identification of unknown fecal bifidobacteria.  相似文献   

11.
A recombination-deficient strain of the phototrophic bacterium Rhodopseudomonas viridis was constructed for the homologous expression of modified photosynthetic reaction center genes. The R. viridis recA gene was cloned and subsequently deleted from the R. viridis genome. The cloned R. viridis recA gene shows high identity to known recA genes and was able to complement the Rec- phenotype of a Rhizobium meliloti recA strain. The constructed R. viridis recA strain showed the general Rec- phenotype, i.e., increased sensitivity to DNA damage and severely impaired recombination ability. The latter property of this strain will be of advantage in particular for expression of modified, nonfunctional photosynthetic reaction centers which are not as yet available.  相似文献   

12.
The recA protein of Escherichia coli binds both single- (SS) and double-stranded (DS) DNA; however, the optimal conditions differ for interaction with these DNA substrates. Binding of DS DNA by recA protein is pH dependent (optimum near pH 6.2) and requires a nucleoside triphosphate (ATP) and divalent cation. Substitution of the 5'-O-3'-thiotriphosphate (ATP(gamma S)) for ATP leads to formation of stable complexes of recA protein and DNA that dissociate very slowly. Formation of these complexes is extremely sensitive to ionic strength and pH. However, once formed, the complexes resist changes in pH and high salt concentrations. SS DNA binds to recA protein in the absence of a nucleoside triphosphate, but recA protein-SS DNA complexes are stabilized by ATP(gamma S). At high recA protein/DNA ratios (1 recA protein monomer/30 nucleotides), these complexes sediment in sucrose gradients as large protein-DNA aggregates. Although ATP(gamma S) blocks dissociation of recA protein from DNA, ATP stimulates the release of recA protein from SS DNA. Hydrolysis of the ATP is not required for dissociation since it is also enhanced by ADP and certain nucleoside triphosphates that are not hydrolyzed by recA protein. recA protein binds with different affinities to ribohomopolymers and deoxyhomopolymers. It preferentially binds polydeoxythymidylate and polydeoxycytidylate but does not bind short oligonucleotides, indicating that there is a minimum size requirement for the binding step. The recA protein exists as a heterogeneous aggregate at pH 7.5 and at low ionic strength. At pH 6.2 in the presence of Mg2+, the protein sediments homogeneously as a dimer. At pH 6.2, ATP or ATP(gamma S) promotes an oligomerization of the recA protein which can be observed as filamentous structures by electron microscopy. Oligomerization is not induced by UTP, a nucleoside triphosphate that is efficiently hydrolyzed by the recA protein, but fails to stimulate efficiently recA protein-promoted annealing and assimilation of single-stranded DNA.  相似文献   

13.
14.
15.
16.
We examined the molecular mechanism of metronidazole resistance by constructing a lambda-Zap II phagemid expression library with genomic DNA from a metronidazole-resistance strain of Helicobacter pylori. Twenty-two clones were found to have elevated MTZ resistances in XLOLR strain of E. coli. Phagemids belonging to the twenty two clones were extracted and then retransformed into the XLOLR strain of E. coli. After MTZ selection, five clones could confer metronidazole resistance consistently. According to Southern hybridization and DNA sequencing, the five clones contained a same locus, recA. In addition, transforming the five clones into BL21 strain of E. coli produced a higher resistance to MTZ. Interestingly, electroporation of one of the five phagemid clones into two MTZ sensitive H. pylori yielded MTZ resistant strains. Comparing amino acid sequence in MTZ resistant with sensitive isolates revealed two point mutations at this locus. Above results suggest that mutation in recA may be associated with metronidazole resistance of H. pylori.  相似文献   

17.
A recombinant plasmid, pBMR5, carrying a recA-like gene of Herbaspirillum seropedicae, was isolated from a H. seropedicae genomic library by intergeneric complementation of Escherichia coli recA mutant strain HB101. Quantitative survival experiments showed that pBMR5 restored the ultraviolet radiation and methyl methanesulfonate resistances and recombinational proficiency of this strain. Hybridization studies showed that there is DNA sequence homology between the recA gene of E. coli K12 and that of H. seropedicae. Restriction sites for EcoRI, HindIII, BamHI, and Bg/II were found in the DNA insert derived from H. seropedicae in pBMR5. A Tn5 insertional mutant of pBMR5, called pBMR26.2, failed to restore recombination proficiency and methyl methanesulfonate and ultraviolet resistance to recA mutants of E. coli.  相似文献   

18.
The 17 described genomic species (DNA groups) of the genus Acinetobacter, including the type strains of the seven named species, were studied by using a multiplex PCR. The multiplex PCR assay combined two primer sets (rA1 and rA2 for recA gene target; rib1 and rib2 for 16S rDNA sequence) in a single reaction. Restriction analysis with two enzymes (Mbol and Hinfl) of the enzymatically amplified products allowed identification of all genospecies. This technique proved to be a rapid and reliable method for the identification of the Acinetobacter genomic species including the closely related DNA groups (1, 2, 3, 13). The results of this study suggest that the proposed method can be used for the identification of Acinetobacter spp. and as such may help to elucidate the ecology and clinical significance of the different species of this genus.  相似文献   

19.
20.
Escherichia coli K12 assay-system is designed in order to detect bioantimutagens, agents preventing mutagenesis by modulation of DNA repair and replication. The assay is composed of four tests aimed at the detection of inhibition of spontaneous and induced mutations (Tests A and B) and at the estimation whether the anti-mutagenic agent acts by increasing the fidelity of DNA replication (Test B), by inhibition of SOS error prone repair (Test C), or by favoring error-free recombinational repair (Test D). In Test A, repair proficient strain and its uvrA counterpart are used for detection of spontaneous and UV-induced mutations, while in Test B mismatch repair deficient strains (mutH, mutS, mutL and uvrD) are used for amplified detection of spontaneous mutations caused by replication errors. In Test C, repair proficient strain carrying sfiA::lacZ fusion is used for measuring the level of SOS induction by monitoring the level of beta-galactosidase. In Test D, the strains carrying different recA alleles (recA+, recA730 and DeltarecA) are used for measuring intrachromosomal recombination between nonoverlapping deletions in duplicated lac operon, by monitoring Lac+ recombinants. The assay-system is validated with model bioantimutagens and used for detection of anti-mutagenic potential of different terpenoid fractions from sage (Salvia officinalis L.). Extract E1/3 of cultivated sage, distinguished from others by its high content of monoterpenoid camphor, reduces UV-induced mutagenesis in Test A, while it has no effect in Tests B and C. In Test D, it enhances intrachromosomal recombination in untreated and UV-irradiated recA+ and recA730 strains. The results suggest that the protective effect is due to stimulation of recombinational repair, similarly to coumarin. We speculate that monoterpenoids from sage enhance genetic recombination by intervening in a formation of RecA-DNA complex and channeling it into recombination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号