首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073 K working at f higher than 1.5. The syngas composition had small effect on the combustion efficiency. This result seems to indicate that the water gas shift reaction acts as an intermediate step in the global combustion reaction of the syngas. The results obtained after 40 h of operation showed that the copper-based oxygen carrier prepared by impregnation could be used in a CLC plant for syngas combustion without operational problems such as carbon deposition, attrition, or agglomeration.  相似文献   

2.
《Fuel》2007,86(12-13):1947-1958
Chemical-looping combustion is a novel technique used for CO2 separation that previously has been demonstrated for gaseous fuel. This work demonstrates the feasibility of using solid fuel (petroleum coke) in chemical-looping combustion (CLC). Here, the reaction between the oxygen carrier and solid fuel occurs via the gasification intermediates, primarily CO and H2. A laboratory fluidized-bed reactor system for solid fuel, simulating a CLC-system by exposing oxygen-carrying particles to alternating reducing and oxidizing conditions, has been developed. In each reducing period, 0.2 g of petroleum coke was added to 20 g of oxygen carrier composed of 60% active material of Fe2O3 and 40% inert MgAl2O4. The effect of steam and SO2 concentration in the fluidizing gas was investigated as well as effect of temperature. The rate of reaction was found to be highly dependent on the steam and SO2 concentration as well as the temperature. Also shown was that the presence of a metal oxide enhances the gasification of petroleum coke. A preliminary estimation of the oxygen carrier inventory needed in a real CLC system showed that it would be below 2000 kg/MWth.  相似文献   

3.
《Fuel》2007,86(7-8):1021-1035
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors, an air reactor and a fuel reactor. The oxygen demanded in the fuel combustion is supplied by a solid oxygen carrier, which circulates between both reactors. Fuel gas and air are never mixed and pure CO2 can be obtained from the flue gas exit. This paper presents the results from the use of an iron-based oxygen-carrier in a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. Natural gas or syngas was used as fuel, and the thermal power was between 100 and 300 W. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated for all tests and stable conditions were maintained during the combustion. The same particles were used during 60 h of hot fluidization conditions, whereof 40 h with combustion. The combustion efficiency of syngas was high, about 99% for all experimental conditions. However, in the combustion tests with natural gas, there was unconverted methane in the exit flue gases. Higher temperature and lower fuel flows increase the combustion efficiency, which ranged between 70% and 94% at 1123 K. No signs of agglomeration or mass loss were detected, and the crushing strength of the oxygen carrier particles did not change significantly. Complementary experiments in a batch fluidized bed were made to compare the reactivity of the oxygen carrier particles before and after the 40 h of operation, but the reactivity of the particles was not affected significantly.  相似文献   

4.
Chemical looping combustion (CLC) uses an oxygen carrier circulating between an air and a fuel reactor to replace direct burning of fuels in air. The very low energy penalty for CO2 separation in CLC gives it the potential to become an important technology on the way to a CO2 neutral energy supply. In this work, the influence of the particle size of coal on the rate of reaction of the coal was investigated in a bed of oxygen carrier. In order to do this, a method to quench the reaction of coal with oxygen carriers at a specified time and measure the particle size distribution of the remaining coal was developed. Three size fractions of coal were used in the experiments: 90–125, 180–212 and 250–355 μm. Particle size distributions of the fuel show a decrease in particle size with time. The influence of devolatilisation of the coal on the coal particle size was measured, showing that coal particles do not break in the fluidized bed reactor used for the experiments. Reaction rates based on measurements of gas phase concentrations of CO2, CO and CH4 showed that the reaction rate is independent of the particle size. These results are in line with literature findings, as studies have shown that carbon gasification is size-independent at conditions similar to those in the performed CLC experiments.  相似文献   

5.
《Fuel》2005,84(7-8):993-1006
In chemical looping combustion (CLC), a solid oxygen carrier circulates between two fluidised bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In this paper, CLC is integrated in a natural gas fired combined cycle (NGCC). In this system, nickel- and iron-based oxygen carriers are compared regarding the system's electrical and exergy efficiencies. Furthermore, the feasibility of CLC in two interconnected pressurised fluidised bed reactors (IPFBR) is studied for both oxygen carriers. The hypothetical layout plus dimensions of the IPFBR is presented for a capacity of 800 MW input of natural gas. Finally, top-firing is proposed as an option to overcome the apparent limitation in operating temperature of the reactor equipment and/or the oxygen carriers. The results indicate that there is no significant difference in the system's efficiency if both oxygen carriers could operate at the same temperature. However, CLC seems easier to be technically realised in an IPFBR with a nickel-based oxygen carrier.  相似文献   

6.
《Fuel》2007,86(7-8):1036-1045
Chemical-looping combustion (CLC) is an attractive technology to decrease greenhouse gas emissions affecting global warming, because it is a combustion process with inherent CO2 separation and therefore without needing extra equipment for CO2 separation and low penalty in energy demand. The CLC concept is based on the split of a conventional combustion of gas fuel into separate reduction and oxidation reactions. The oxygen transfer from air to fuel is accomplished by means of an oxygen carrier in the form of a metal oxide circulating between two interconnected reactors. A Cu-based material (Cu14Al) prepared by impregnation of γ-Al2O3 as support with two different particle sizes (0.1–0.3 mm, 0.2–0.5 mm) was used as an oxygen carrier for a chemical-looping combustion of methane. A 10 kWth CLC prototype composed of two interconnected bubbling fluidized bed reactors has been designed, built in and operated at 800 °C during 100 h for each particle size. In the reduction stage full conversion of CH4 to CO2 and H2O was achieved using oxygen carrier-to-fuel ratios above 1.5. Some CuO losses as the active phase of the CLC process were detected during the first 50 h of operation, mainly due to the erosion of the CuO present in external surface of the alumina particles. The high reactivity of the oxygen carrier maintained during the whole test, the low attrition rate detected after 100 h of operation, and the absence of any agglomeration problem revealed a good performance of these CuO-based materials as oxygen carriers in a CLC process.  相似文献   

7.
Rahul D. Solunke 《Fuel》2011,90(2):608-617
Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.  相似文献   

8.
Chemical-looping combustion (CLC) of syngas has a potential to generate power economically with achieving the inherent carbon dioxide capture. An oxygen carrier with high reactivity and excellent physical properties would make CLC technology more competitive. In this work, oxygen carrier with 70 wt% NiO was prepared by spray drying technique. The prepared oxygen carrier had excellent physical properties for fluidized-bed application of CLC process. The reactivity of the oxygen carrier in repeated reduction-oxidation was measured by thermogravimetric analyzer with simulated syngas. Oxygen carrier calcined at 1,100 °C showed high oxygen transfer capacity of 14.7 wt%, utilizing 98% of the transferable oxygen. Oxygen transfer capacity and oxygen transfer rate was increased with the increase of reaction temperature, and the highest oxygen transfer rate was observed when about half of the transferable oxygen reacted with syngas. The reduction rate of the syngas (mixture of H2 and CO) appeared to be approximately the sum of the reaction rate of each fuel gas. The experimental results indicated that the spray-dried NiO oxygen carrier prepared in this work could be a good quality oxygen carrier for the CLC of syngas.  相似文献   

9.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

10.
Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion with inherent CO2 capture and sequestration, which is able to mitigate greenhouse gases (GHGs) emission. In this study, to design a 0.5MWth pressurized chemical looping combustor for natural gas and syngas the effects of solid residences time on CO2 selectivity were investigated in a novel semi-continuous CLC reactor using Ni-based oxygen carrier particle. The semi-continuous chemical looping combustor was designed to simulate the fuel reactor of the continuous chemical looping combustor. It consists of an upper hopper, a screw conveyor, a fluidized bed reactor, and a lower hopper. Solid circulation rate (G s ) was controlled by adjusting the rotational speed of the screw conveyor. The measured solid circulation rate increased linearly as the rotational speed of the screw increased and showed almost the same values regardless of temperature and fluidization velocity up to 800°C and 4 U mf , respectively. The solid circulation rate required to achieve 100% CH4 conversion was varied to change G s -fuel ratio (oxygen carrier feeding rate/fuel feeding rate, kg/Nm3). The measured CO2 selectivity was greater than 98% when the Gs-fuel ratio was higher than 78 kg/Nm3.  相似文献   

11.
In this study, the production of H2 utilizing chemical looping combustion (CLC) in a methane dry reformer assisted by H2 perm-selective membranes in a CLC-DRM configuration has been investigated. CLC via employment of a Mn-based oxygen carrier generates large amounts of heat in addition to providing CO2 as the raw material for the dry reforming (DR) reaction. The main advantage of the CLC-DRM configuration is the simultaneous capturing and consuming of CO2 as a greenhouse gas for H2 production.A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-DRM configuration. Simulation results show that CH4 is completely consumed in the fuel reactor (FR) of the CLC-DRM and pure CO2 is captured by condensation of H2O. Also, CH4 conversion and H2 yield reach 73.46% and 1.459 respectively at the outlet of the DR side in the CLC-DRM. Additionally, 4562 kmol h−1 H2 is produced in the DR side of the CLC-DRM.Finally, results indicate that by increasing the FR feed temperature up to 880 K, CH4 conversion and H2 production are enhanced to 81.15% and 4790 kmol h−1 respectively.  相似文献   

12.
基于赤铁矿载氧体的煤化学链燃烧试验   总被引:3,自引:3,他引:0       下载免费PDF全文
化学链燃烧是一种具有CO2内分离特性的燃烧方式。以赤铁矿为载氧体,在1 kWth级串行流化床上进行了煤化学链燃烧试验。讨论了燃料反应器温度对气体产物组分的影响;比较了各反应参数对煤气化效率、煤气化产物的转化效率及碳捕集效率的影响情况,分析了煤中硫的排放问题。试验结果表明:温度由900℃升高到985℃,燃料反应器中CO体积份额逐渐增加,CO2体积份额逐渐减小,空气反应器中CO2浓度呈线性下降。燃料反应器温度的升高促进煤气化效率及碳捕集效率大大提高。载氧体量和系统负荷是煤气化产物转化效率的主要影响因素,载氧体量的增加和负荷的增加分别会使煤气化产物转化效率提高和下降。燃料反应器中的硫主要以SO2形式存在于燃料反应器,随温度的升高,SO2浓度由515×10-6逐渐增加到562×10-6相似文献   

13.
Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite.  相似文献   

14.
Process intensification options are explored for near-carbon-neutral, natural-gas-fueled combined cycle (CC) power plants, wherein the conventional combustor is replaced by a series of chemical-looping combustion (CLC) reactors. Dynamic modeling and optimization are deployed to design CLC-CC power plants with optimal configuration and performance. The overall plant efficiency is improved by optimizing the CLC reactor design and operation, and modifying the CC plant configuration and design. The optimal CLC-CC power plant has a time-averaged efficiency of 52.52% and CO2 capture efficiency of 96%. The main factor that limits CLC-CC power plant efficiency is the reactor temperature, which is constrained by the oxygen carrier material. CLC exhaust gas temperature during heat removal and gas compressor to gas turbine pressure ratio are the most important operating variables and if properly tuned, CLC-CC power plants can reach high thermodynamic efficiencies. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16516 2019  相似文献   

15.
《Fuel》2007,86(1-2):113-122
Chemical-looping combustion is a two-stage process proposed as an alternative for the combustion of carbonaceous materials, such as natural gas or coal gas, for almost complete CO2 capture. In the reduction stage, the structural oxygen contained in the lattice of a reducible inorganic oxide, is used for combustion of the carbonaceous material. In the regeneration stage the oxygen carrier, found in a reduced state after the reduction stage, is regenerated with pure air to recover the physical and chemical properties of the carrier, ready to reinitiate a new cycle reduction-regeneration. In a typical multicycle reactor test, the carriers are subjected to accumulative chemical and thermal stresses and the performance will, probably, decay progressively with the number of cycles. The occurrence of some side reactions may limit the efficiency of the overall process in CO2 capture. In this paper, titania-supported iron oxides with different iron loadings have been tested in multicycle tests in a fixed-bed reactor at 900 °C and atmospheric pressure, as oxygen carriers for the chemical-looping combustion of methane. The study shows that the available oxygen for methane combustion in the reduction stage is lower than expected since the active phase interacts with the support forming FeTiO3 ilmenite. The reactivity of these iron based carriers in the reduction stage is independent on the iron oxide content but lower than that exhibited by other tested carriers, such as CuO or NiO. However, iron carriers are cheaper no showing any tendency to carbon deposition.  相似文献   

16.
The study of the combustion process carried out in an oxygen-enriched atmosphere in a circulating fluidized bed (CFB) combustor is presented. The experiments were focused on fuel behavior in the conditions of increased oxygen concentration, at a different temperature and a different fuel load in the combustion chamber. The tests were performed in a laboratory-scale CFB combustor. Brown coal was used as the fuel. The values of variable parameters were in the following ranges: the oxygen concentration in the delivered stream of gas substrates (mixtures of O2 + N2 and O2 + CO2): 21 ÷ 60%; the combustor's temperature: 973 ÷ 1133 K; the mass of fuel portions: 4 ÷ 8 g. Based on the obtained data, carbon, sulfur and nitrogen conversion ratios were calculated.  相似文献   

17.
《Fuel》2007,86(1-2):244-255
The dual fluidised bed gasification technology is prospective because it produces high caloric product gas free of N2 dilution even when air is used to generate the gasification-required endothermic heat via in situ combustion. This study is devoted to providing the necessary process fundamentals for development of a bubbling fluidized bed (BFB) biomass gasifier coupled to a pneumatic transported riser (PTR) char combustor. In a steam-blown fluidized bed of silica sand, gasification of 1.0 g biomass, a kind of dried coffee grounds containing about 10 wt.% water, in batch format clarified first the characteristics of fuel pyrolysis (at 1073 K) under the conditions simulating that prevailing in the gasifier intended to develop. The result shown that via pyrolysis more than 60% of fuel carbon and up to 75% of fuel mass could be converted into product gas, while the simultaneously formed char was about 22% of fuel mass. With all of these data as the known input, a process simulation using the software package ASPEN then revealed that the considered dual bed gasification plant, i.e. a BFB gasifier + a PTR combustor, is able to sustain its independent heat and mass balances to allow cold gas efficiencies higher than 75%, given that the fuel has suitable water contents and the heat carried with the product gas from the gasifier and with the flue gas from the char combustor is efficiently recovered inside the plant. In a dual fluidized bed pilot gasification facility simulating the gasification plant for development, the article finally demonstrated experimentally that the necessary reaction time for fuel, i.e. the explicit residence time of fuel particles inside the BFB gasifier computed according to a plug granular flow assumption, can be lower than 160 s. The results shown that varying the residence time from 160 to 1200 s only slightly increased the gasification efficiency, but the reaction time available in the PTR, say, about 3 s in our case, was too short to assure the finish even of fuel pyrolysis.  相似文献   

18.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

19.
Chemical-looping combustion (CLC) is a novel technology that can be used to meet demands on energy production without CO2 emissions. The CLC-process includes two reactors, an air and a fuel reactor. Between these two reactors oxygen is transported by an oxygen carrier, which most often is a metal oxide. This arrangement prevents mixing of N2 from the air with CO2 from the combustion. The combustion gases consist almost entirely of CO2 and H2O. Therefore, the technique reduces the energy penalty that normally arises from the separation of CO2 from other flue gases, hence, CLC may make capture of CO2 cheaper.Iron ore and oxide scale from steel production were tested as oxygen carriers in CLC batch experiments with solid fuels. Petroleum coke, charcoal, lignite and two bituminous coals were used as fuels.The experiments were carried out in a laboratory fluidized-bed reactor that was operating cyclically with alternating oxidation and reduction phases. The exhaust gases were led to an analyzer where the contents of CO2, CO, CH4 and O2 were measured. Gas samples collected in bags were used to analyze the content of hydrogen in a gas chromatograph.The results showed that both the iron ore and the oxide scale worked well as oxygen carrier and both oxygen carriers increased their reactivity with time.  相似文献   

20.
A chemical looping combustion (CLC) combined cycle with coke oven gas as fuel and NiO/NiAl2O4 as an oxygen carrier is proposed. The system was simulated by Aspen Plus® and the oxygen carrier circulation ratio was calculated. The effects of key operational temperatures and different gas turbines on the system performance were investigated. Under optimized conditions, a high CO2 capture efficiency could be achieved. To capture CO2 thoroughly, the PG6561B gas turbine can be employed, allowing for nearly 100 % CO2 capture efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号