首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prawin  J.  Rao  A. Rama Mohan  Sethi  Abhinav 《Nonlinear dynamics》2020,100(1):289-314

Identification of nonlinear systems, especially with multiple local nonlinearities exhibiting disproportional ratios of the degree of nonlinearity and present at a single or multiple spatial locations, is a highly challenging inverse problem. Identification of such complex nonlinear systems cannot be handled easily by the existing conventional restoring force or describing function methods. Further, noise-corrupted measured time history responses make the parameter identification process much more difficult. Keeping this in view, we propose a new meta support vector machine (meta-SVM) model to precisely identify the type, spatial location(s) and also the nonlinear parameters present in disproportionate levels using the noisy measurements. Apart from the conventional SVM model, we also explore the effectiveness of the non-batch processing models like incremental learning for lesser computational cost and increased efficiency. Both incremental and conventional support vector regression models are explored to precisely identify the nonlinear parameters. A numerically simulated multi-degree of freedom spring-mass system with limited multiple local nonlinearities at a few selected spatial locations is considered to illustrate the proposed meta-SVM model for nonlinear parametric identification. However, the extension of the proposed meta-SVM model is rather straightforward to include all types of nonlinearities and cases with the simultaneous existence of multiple numbers of same or different nonlinearities (i.e. combined nonlinearities) at single or multiple locations. It is also clearly established from the numerical simulation studies that the proposed incremental meta-SVM model paves way for online real-time identification of nonlinear parameters which is not yet been addressed in the existing literature.

  相似文献   

2.
An investigation is presented of the response of a three-degree-of-freedom system with quadratic nonlinearities and the autoparametric resonances 322 and 221 to a harmonic excitation of the third mode, where the m are the linear natural frequencies of the system. The method of multiple scales is used to determine six first-order nonlinear ordinary differential equations that govern the time variation of the amplitudes and phases of the interacting modes. The fixed points of these equations are obtained and their stability is determined. For certain parameter values, the fixed points are found to lose stability due to Hopf bifurcations and consequently the system exhibits amplitude-and phase-modulated motions. Regions where the amplitudes and phases display periodic, quasiperiodic, and chaotic time variations and hence regions where the overall system motion is periodically, quasiperiodically, and chaotically modulated are determined. Using various numerical simulations, we investigated nonperiodic solutions of the modulation equations using the amplitudeF of the excitation as a control parameter. As the excitation amplitudeF is increased, the fixed points of the modulation equations exhibit an instability due to a Hopf bifurcation, leading to limit-cycle solutions of the modulation equations. AsF is increased further, the limit cycle undergoes a period-doubling bifurcation followed by a secondary Hopf bifurcation, resulting in either a two-period quasiperiodic or a phase-locked solution. AsF is increased further, there is a torus breakdown and the solution of the modulation equations becomes chaotic, resulting in a chaotically modulated motion of the system.  相似文献   

3.
Wei  Weiyan  Yabuno  H. 《Nonlinear dynamics》2019,98(1):657-670
Nonlinear Dynamics - Railway vehicles suffer from hunting motion, even when traveling below the critical speed obtained by linear analysis, due to the nonlinear characteristics of the wheel system....  相似文献   

4.
Singh  Aryan  Moore  Keegan J. 《Nonlinear dynamics》2020,101(3):1667-1680
Nonlinear Dynamics - In this paper, a SEIR epidemic model for the COVID-19 is built according to some general control strategies, such as hospital, quarantine and external input. Based on the data...  相似文献   

5.
On methods for continuous systems with quadratic and cubic nonlinearities   总被引:3,自引:0,他引:3  
Methods for determining the response of continuous systems with quadratic and cubic nonlinearities are discussed. We show by means of a simple example that perturbation and computational methods based on first discretizing the systems may lead to erroncous results whereas perturbation methods that attack directly the nonlinear partial-differential equations and boundary conditions avoid the pitfalls associated with the analysis of the discretized systems. We describe a perturbation technique that applies either the method of multiple scales or the method of averaging to the Lagrangian of the system rather than the partial-differential equations and boundary conditions.  相似文献   

6.
In this paper a Hybrid Domain Boundary Element Method is developed for the geometrically nonlinear dynamic analysis of inelastic Euler-Bernoulli beams of arbitrary doubly symmetric simply or multiply connected constant cross-section, resting on viscous inelastic Winkler foundation. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse dynamic loading and bending moments in both directions as well as to axial loading, while its edges are subjected to the most general boundary conditions. A displacement based formulation is developed and inelastic redistribution is modelled through a distributed plasticity (fibre) approach. A uniaxial hysteretic law is considered for the evolution of the plastic part of the normal stress following the phenomenological hysteresis model, while hysteretic force-displacement model is also employed in order to describe the inelastic behaviour of the Winkler springs. Numerical integration over the beam cross sections is performed in order to resolve the hysteric parts of the stress resultants. Application of the boundary element technique yields a system of nonlinear Differential-Algebraic Equations, which are written in state-space form and solved by an incremental–iterative solution strategy. Numerical examples are worked out confirming the accuracy and the computational efficiency of the proposed beam formulation, as well as the significant influence of material and geometrical nonlinearities in the response of beam-soil interaction systems.  相似文献   

7.
Based on temporal rescaling and harmonic balance, an extended asymptotic perturbation method for parametrically excited two-degree-of-freedom systems with square and cubic nonlinearities is proposed to study the nonlinear dynamics under 1:2 internal resonance. This asymptotic perturbation method is employed to transform the two-degree-of-freedom nonlinear systems into a four-dimensional nonlinear averaged equation governing the amplitudes and phases of the approximation solutions. Linear stable analysis at equilibrium solutions of the averaged equation is done to show bifurcations of periodic motion and homoclinic motions. Furthermore, analytical expressions of homoclinic orbits and heteroclinic cycles for the averaged equation without dampings are obtained. Considering the action of the damping, the bifurcations of limit cycles are also investigated. A concrete example is further provided to discuss the correctness and accuracy of the extended asymptotic perturbation method in the case of small-amplitude motion for the two-degree-of-freedom nonlinear system.  相似文献   

8.
Pugi  Luca  Reatti  Alberto  Corti  Fabio 《Meccanica》2019,54(1-2):321-331
Meccanica - Wireless recharge of electric vehicles is an important field of research. Design of inductive power transfer systems involves the optimization of resonant coils coupled through mutually...  相似文献   

9.
Ultrasonic power transducers are commonly used in applications like cleaning, plastics welding or sonochemistry. Typically, the design of transducers for new applications is a tedious iterative process of design, prototype construction and tests. The transducers must fulfill the needs and restrictions of the specific application, as otherwise the transducer might be oversized or fail during operation. While reliability has been studied worldwide intensively in the case of piezoelectric multilayer actuators—driven by car industry which now uses such actuators in their fuel injection systems—nearly no literature is available for the reliability of ultrasonic power transducers. As well, manufacturers seldom present data about aging or lifetime of their components. To enhance the knowledge about typical failure mechanisms of ultrasonic power transducers under different load conditions, our contribution—as a first step—reports on a theoretical study on the reliability of common known ultrasonic transducers and gives some examples of typical failures and their influence on the characteristics of the transducer.  相似文献   

10.
11.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

12.

In the industry field, the increasingly stringent requirements of lightweight structures are exposing the ultimately nonlinear nature of mechanical systems. This is extremely true for systems with moving parts and loose fixtures which show piecewise stiffness behaviours. Nevertheless, the numerical solution of systems with ideal piecewise mathematical characteristics is associated with time-consuming procedures and a high computational burden. Smoothing functions can conveniently simplify the mathematical form of such systems, but little research has been carried out to evaluate their effect on the mechanical response of multi-degree-of-freedom systems. To investigate this problem, a slightly damped mechanical two-degree-of-freedom system with soft piecewise constraints is studied via numerical continuation and numerical integration procedures. Sigmoid functions are adopted to approximate the constraints, and the effect of such approximation is explored by comparing the results of the approximate system with the ones of the ideal piecewise counter-part. The numerical results show that the sigmoid functions can correctly catch the very complex dynamics of the proposed system when both the above-mentioned techniques are adopted. Moreover, a reduction in the computational burden, as well as an increase in numerical robustness, is observed in the approximate case.

  相似文献   

13.
14.
A technique for order reduction of dynamic systems in structural form with static piecewise linear nonlinearities is presented. By utilizing two methods which approximate the nonlinear normal mode (NNM) frequencies and mode shapes, reduced-order models are constructed which more accurately represent the dynamics of the full model than do reduced models obtained via standard linear transformations. One method builds a reduced-order model which is dependent on the amplitude (initial conditions) while the other method results in an amplitude-independent reduced model. The two techniques are first applied to reduce two-degree-of-freedom undamped systems with clearance, deadzone, bang-bang, and saturation stiffness nonlinearities to single-mode reduced models which are compared by direct numerical simulation with the full models. It is then shown via a damped four-degree-of-freedom system with two deadzone nonlinearities that one of the proposed techniques allows for reduction to multi-mode reduced models and can accommodate multiple nonsmooth static nonlinearities with several surfaces of discontinuity. The advantages of the proposed methods include obtaining a reduced-order model which is signal-independent (doesn’t require direct integration of the full model), uses a subset of the original physical coordinates, retains the form of the nonsmooth nonlinearities, and closely tracks the actual NNMs of the full model.  相似文献   

15.
We implement the method of multiple scales to investigate primary resonances of a weakly nonlinear second-order delay system with cubic nonlinearities. In contrast to previous studies where the implementation is confined to the assumption of linear delay terms with small coefficients (Hu et al. in Nonlinear Dyn. 15:311, 1998; Ji and Leung in Nonlinear Dyn. 253:985, 2002), in this effort, we propose a modified approach which alleviates that assumption and permits treating a problem with arbitrarily large gains. The modified approach lumps the delay state into unknown linear damping and stiffness terms that are functions of the gain and delay. These unknown functions are determined by enforcing the linear part of the steady-state solution acquired via the method of multiple scales to match that obtained directly by solving the forced linear problem. We examine the validity of the modified procedure by comparing its results to solutions obtained via a harmonic balance approach. Several examples are discussed demonstrating the ability of the proposed methodology to predict the amplitude, softening-hardening characteristics, and stability of the resulting steady-state responses. Analytical results also reveal that the system can exhibit responses with different nonlinear characteristics near its multiple delay frequencies.  相似文献   

16.
Micro/nanomechanical resonators often exhibit nonlinear behaviors due to their small size and their ease to realize relatively large amplitude oscillation. In this work, we design a nonlinear micromechanical cantilever system with intentionally integrated geometric nonlinearity realized through a nanotube coupling. Multiple scales analysis was applied to study the nonlinear dynamics which was compared favorably with experimental results. The geometrically positioned nanotube introduced nonlinearity efficiently into the otherwise linear micromechanical cantilever oscillator, evident from the acquired responses showing the representative hysteresis loop of a nonlinear dynamic system. It was further shown that a small change in the geometry parameters of the system produced a complete transition of the nonlinear behavior from hardening to softening resonance.  相似文献   

17.
Archive of Applied Mechanics - A novel strategy to characterize and identify structural nonlinearities in MDOF systems based on reconstructing constant response tests from constant excitation tests...  相似文献   

18.
Paruchuri  Sai Tej  Guo  Jia  Kurdila  Andrew 《Nonlinear dynamics》2020,101(2):1397-1415
Nonlinear Dynamics - Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear constitutive laws or external factors like realizations of boundary conditions. It can...  相似文献   

19.
This paper reviews recent advances (mostly after year 2000) in shock and vibration analysis of hard disk drives (HDD) considering the presence of nonlinearities and discontinuities. Components and dynamic phenomena in HDD where effects of mechanical nonlinearity and discontinuities are significant are discussed, e.g., head actuator suspension, dimple and slider, head–disk interface, fluid dynamic bearing, spinning disks, and load/unload dynamics. Ways to model these nonlinearities and discontinuities are reviewed in detail. Our research on modeling an entire HDD in operating mode subject to shock and vibration using a flexible multibody dynamics formulation is also presented. The numerical simulation of the shock response of a 1-in. form factor HDD is presented. A half-sinusoidal acceleration shock is applied at the base of the HDD. Response of the flying height for different shock amplitudes and duration times is simulated.  相似文献   

20.
对于具有局部非线性的多自由度动力系统,提出一种有效方法,该方法将线性自由度转换到模态空间中,并对其进行缩减,而将非一自由度仍保留在物理空间中,避免了在数值分析中求非线性因素时的坐标转换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号