首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple-metal catalysts (Ni-Mn-Ce-K/bauxite) for Water-Gas Shift (WGS) reaction were prepared by impregnation, and the catalytic structure and properties were investigated by N2 physical, XRD, H2-TPR, and CO-TPD. The results indicated that the addition of 7.5% CeO2 improved the activity of the WGS reaction obviously, and also increased the specific surface area and pore volume of the catalysts. The addition of CeO2 decreases the reduction temperature, enhanced the adsorption and activation of H2O, and improved the adsorption content of CO. Besides, active sites were not changed and the number of active sites on catalysts did not increase obviously.  相似文献   

2.
High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃.  相似文献   

3.
Monolithic macroporous Pt/CeO2/Al2O3 and zirconia modified Pt/CeO2/Al2O3 catalysts were prepared by using concentrated emulsions synthesis route. The catalytic performances over the platinum-based catalysts were investigated by water-gas shift (WGS) reaction in a wide temperature range (180-300 oC). The samples were characterized with thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and temperature programmed reducti...  相似文献   

4.
A series of Mn/CeO2-Al2O3 and K/CeO2-Al2O3 catalysts for hydrogenation of benzoic acid to benzaldehyde were prepared to in-vestigate the effect of Mn, K addition on CeO2-Al2O3 catalyst. X-ray diffraction (XRD) and H2-temperature-programmed reduction (H2-TPR) results suggested that the interaction between CeO2 and MnOx enhanced the reducibility of catalysts and therefore benzoic acid conversion.The addition of K increased the number of basic number on the catalyst which leads to a high selectivity to benzaldehyde, but excessive addition imposed negative effects on the catalyst performance. A Mn-K/CeO2Al2O3 catalyst was developed and investigated in the reaction. The simul-taneous addition of Mn and K enhanced not only the catalytic activity but also the capacity to resist the coke formation over catalyst.  相似文献   

5.
The Pd-only catalysts for motorcycle were prepared by impregnating CeO2-ZrO2-Al2O3 and CeO2-ZrO2+Al2O3 with PdCl2 aque-ous solution and characterized by X-ray diffraction (XRD), oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR) methods. The XRD result indicated that the CeO2-ZrO2-Al2O3 compound prepared by co-precipitation formed a single solid solu-tion and had good thermal stability, and Pd phase was not observed in all catalysts. The TPR results showed that the reduction temperature of Pd/CeO2-ZrO2-Al2O3 catalyst was lower than that of Pd/CeO2-ZrO2+Al2O3 catalyst whether they were fresh or aged catalysts. The Pd/CeO2-ZrO2-Al2O3 exhibited high three-way catalytic activity at low temperature, high thermal stability, and wide working window, sug-gesting a great potential for applications.  相似文献   

6.
The CeO_2-TiO_2(CeTi)and CeO_2/WO_3-TiO_2(CeWTi)catalysts were prepared by sol-gel method.The asprepared catalysts were hydrothermally treated at 760 ℃ for 48 h in air containing 10 vol% H_2O to obtain the hydrothermal aged catalysts.The sulfur aged catalysts were treated at 400 ℃ with 100 ppm SO_2,10%water vapor,air balance for 48 h and catalysts.The powder X-ray diffraction(XRD)and Raman results indicate that the crystallization of hydrothermal aged catalysts is more serious than sulfur aged catalysts.In addition,tungsten species can stabilize the CeTi catalyst from grain growth.According to the results of in situ diffuse reflectance infrared Fourier transform spectra(DRIFTS),temperatureprogrammed desorption of ammonia(NH_3-TPD),H_2 temperature-programmed reduction(H_2-TPR)and ammonia oxidation,the aging process leads to loss of surface area,redox properties,surface acidities and surface ceria concentration,especially for the hyd rothermal aging.The NH_3-NO/NO_2 SCR perfo rmances of sulfur aged catalysts are better than that of hydrothermal aged catalysts.Compared with CeTi catalyst,the addition of tungsten inhibits the crystallization of catalyst.So that more acid sites and active sites are retained.This is also the reason why tungsten addition improves the NH_3-NO/NO_2 SCR performance of CeTi catalyst.  相似文献   

7.
The influences of CeO2-ZrO2 and γ-Al2O3 mixing methods on the catalytic activity and stability of partial oxidation of methane (POM) were investigated over Ni/Ce0.7Zr0.3O2-Al2O3 catalysts. The catalysts were characterized by XRD, TPR, H2-chemsorption, and TG-DTA. For fresh catalysts, the results showed that the salt precursor mixing catalyst (ATOM) presented better performance than the catalysts prepared by the precipitator mixing method (MOL) and the powder mechanically mixing method (MECH). The result of XRD suggested that the interaction between CeO2-ZrO2 and Al2O3 in ATOM sample was stronger than the others, which led to more lattice defects and thereby better initial activity. Moreover, the MECH sample had the best stability and the least coke deposition in 24 h stability tests. The results of TPR and H2-chemsorption indicated that the intimate contact of Ni-Al in MECH sample enhanced the ability of resisting coke deposition and metal sintering.  相似文献   

8.
Ammonia(NH3) decomposition to release COx-free hydrogen(H2) over non-noble catalysts has gained increasing attention.In this study,three nanostructured CeO2 with different morphologies,viz.rod(R).sphere(Sph),and spindle(Spi),were fabricated and served as supports for Ni/CeO2 catalyst.The CeO2supports are different in particle sizes,specific surface area and porosity,resulting in the formation of Ni nanoparticles with distinguished...  相似文献   

9.
Selective hydrogenation of unsaturated aldehydes remains a grand challenge in controlling chemoselectivity up to now.We synthesized a series of PtFex/CeO2 catalysts,which were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS) as well as temperature-programmed-reduction by hydrogen(H2-TPR).The catalytic performance of PtFex/CeO2,including cinnamaldehyde(CAL) conversion and sele...  相似文献   

10.
CeO2,La2O3,and CeO2-Y2O3 oxides were coated on the surface of spherical granular AI2O3(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H2PtCl6·6H2O adsorption rates of the Al  相似文献   

11.
This study was focused on the influence of active oxygen on the performance of Pt/CeO_2 catalysts for CO oxidation. A series of CeO_2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO_2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H_2 temperature-programmed reduction(H_2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO_2. After loading Pt, the more active oxygen on CeO_2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt~(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt~(δ+) species may contribute to the high activity at elevated temperature.  相似文献   

12.
A series of transition metals (Fe, Co, Ni, Cu, Cr and Mn)-doped CeO2–TiO2 catalysts were prepared by the sol–gel method and applied for the catalytic removal of 1,2-dichloroethane (DCE) as a model for chlorinated VOCs (CVOCs). The various characterization methods including X-ray diffraction (XRD), N2 adsorption–desorption, UV-Raman, NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) were utilized to investigate the physicochemical properties of the catalysts. The results show that doping Fe, Co, Ni or Mn can obviously promote the activity of CeO2–TiO2 mixed oxides for DCE degradation, which is related to their improved texture properties, acid sites (especially for strong acidity) and low-temperature reducibility. Particularly, CeTi–Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane (DCE) degradation, giving a T90% value as low as 250 °C. More importantly, only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs (dichloromethane (DCM), trichloroethylene (TCE) and chlorobenzene (CB)) over CeTi–Fe1/9 catalyst with high durability.  相似文献   

13.
The monometallic Ru catalysts with the CeO2 without calcination and ZnSO4 as co-modifiers gave a cyclohexene yield of 58.5% at the optimum nominal CeO2/Ru molar ratio of 0.15. Moreover, this catalyst had a good stability. The chemisorbed (Zn(OH)2)3(ZnSOa)(H20)3 salt on Ru surface, which was formed by the CeO2 reacting with ZnSO4, created the new Ru active sites suitable for the formation of cyclohexene and improved the selectivity to cyclohexene. In addition, the Zn2+ in the aqueous phase could form a stable complex with cyclohexene, stabilizing the cyclohexene in the liquid phase and improving the selectivity to cyclo- hexene. The calcination treatment of CeO2 was not beneficial for the enhancement of the selectivity to cyclohexene since it is difficult for the CeO2 calcinated to react with ZnSO4 to form the (Zn(OH)2)3(ZnSO4)(H20)3 salt.  相似文献   

14.
A series of Ba/CeO2 catalysts with different Ba loading amounts were prepared by incipient wetness impregnation. Their NOx adsorption behaviors under NO and NO+O2 conditions were investigated by in situ DRIFTS. It was found that NOx was ad-sorbed and stored in the form of nitrites and nitrates on both Ba and Ce sites on the surface of the catalysts. The less thermally stable BaCO3 was suggested to be the main active phase for NOx trapping. Ceria served primarily as an oxygen supplier in the absence of O2, and the reaction from nitrites to nitrates on Ba sites was the key step in this case. In the presence of O2, however, gaseous O2 became the main oxygen source. The NOx adsorption capacity of the catalyst was dominated by the Ba content. Moreover, the stability of ni-trites and nitrates formed on Ce sites was found to be lower than those formed on Ba sites which existed in the form of the ionic bar-ium nitrate species.  相似文献   

15.
Rh single atom catalysts(SACs) have been insensitively investigated recently due to the maximum utilization efficiency of Rh,one of the most expensive precious metals.Although great efforts have been made in the development and application of Rh SACs,there are few reports on the precise control of the local coordination environment of Rh single sites on CeO2 and their catalytic performance for N2O decomposition.Herein,Rh/CeO2 catalysts with different Rh-O coordin...  相似文献   

16.
In the work, supported catalysts of FeOx and MnOx co-supported on aluminum-modified CeO2 was synthesized for low-temperature NH3-selective catalytic reduction (NH3-SCR) of NO. Impressively, the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2. The activity tests demonstrate that Fe–Mn/Ce1Al2 catalyst shows over 90% NO conversion at 75–250 °C and exhibits better SO2 resistance compared to Fe–Mn/CeO2. Fe–Mn/Ce1Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping. Also, the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species, Mn4+ species, Ce3+ species and the enhanced reducibility of Fe–Mn/Ce1Al2, which is superior to the Fe–Mn/CeO2 catalyst. More importantly, we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates (monodentate nitrate) is generated during NH3-SCR reaction. This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.  相似文献   

17.
Barium oxide was developed successfully to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3(CZLA) compound oxides by impregnation method. N2 adsorption(BET), X-ray diffraction(XRD), H2-temperature-programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the influence of BaO on the physicochemical properties of catalyst. And catalytic activity tests for methanol, CO, C3H8 and NO conversion were evaluated. Catalytic activity results showed that BaO had a positive effect on the conversion of all pollutants. H2-TPR results suggested that the addition of BaO increased the reductive ability of the palladium catalysts. The XPS results indicated that doping BaO also improved the dispersion of Pd species and increased the amounts of Ce3+ on the Pd-Ba/CZLA catalyst surface, which led to a better redox property. The excellent redox property helped to improve the catalytic activities toward all the pollutants over Pd-based catalysts.  相似文献   

18.
The CuO/CeO2 catalysts were investigated by means of X-ray diffraction(XRD),laser Raman spectroscopy(LRS),X-ray photoelectronic spectroscopy(XPS),temperature-programmed reduction(TPR),in situ Fourier transform infrared spectroscopy(FTIR) and NO+CO reaction.The results revealed that the low temperature(150 °C) catalytic performances were enhanced for CO pretreated samples.During CO pretreatment,the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present.The low valence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation.These effects in turn led to higher activities of CuO/CeO2 for NO reduction.The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction.  相似文献   

19.
In this study, the promotion effect of H2 pretreatment on the SCR performance of CeO2 catalyst was investigated based on the characterization results of XRD, H2-TPR, Raman and in situ DRIFT techniques. Lower crystallinity, higher reducibility and surface acidity can be found on CeO2-H catalyst. The results of DRIFT study reveal that the pretreatment of CeO2 catalyst with H2 can facilitate the adsorption of NH3 and NOx species, while the adsorbed NOx is basically inactive in the NH3-SCR reaction. Moreover, the reaction mechanism of the NH3-SCR reaction over CeO2 catalyst is not changed by H2 pretreatment, which is mainly under the control of Eley-Rideal (E-R) mechanism. The enhanced SCR performance of CeO2-H catalyst is mainly due to the promoted NH3 adsorption and the subsequent facilitation of SCR reaction through E-R pathway.  相似文献   

20.
MnOx–CeO2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO2 and amorphous MnOx existed in MnOx–CeO2 catalysts. High temperature calcination caused the sintering of amorphous MnOx and transforming to bulk crystalline Mn2O3. H2-TPR and XPS results suggested the valence of Mn in MnOx–CeO2 was higher than pure MnOx, and decreased with the increasing calcination temperature. The turnover frequency (TOF) was calculated based on the initial reducibility according to H2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnOx with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnOx plays a key role in low-temperature NO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号