首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations of the aging behavior induced by high temperatures coupled with oxidizing atmosphere of model NO x storage systems Ba/Al2O3 and Ba/CeO2 are reported in this paper. The samples were prepared, calcined and exposed to temperatures between 500 and 1000 °C in air for 12 h for thermal aging. Samples were characterized with XRD, HRSEM, DSC-TGA-MS and BET analyses. In XRD investigations of all model systems calcined at 500 °C for 2 h, the NO x storage component was present in form of BaCO3. The release of CO2 as a result of the decarbonization of the NO x storage component at increased temperatures was verified by thermogravimetric investigations. In the case of Ba/Al2O3, already during calcination a partial reaction of the NO x storage component with Al2O3 resulting in the formation of barium aluminate was observed. In the model system Ba/CeO2 the decomposition of the barium carbonate started above 780 °C and the formation of a barium cerium mixed oxide was observed. The presence of the barium containing NO x storage component has a strong influence on the specific surface area of the model NO x storage systems. The morphology and crystallite size of CeO2 modified with the barium containing NO x storage component exhibited distinct changes compared to the unmodified oxide. The NO x storage efficiency determined by model gas tests of freshly prepared and engine aged model NO x storage catalysts correlates well with the above described observations.  相似文献   

2.
NO x adsorption was measured with a barium based NOx storage catalyst at an engine bench equipped with a lean burn gasoline direct injection engine (GDI). In order to study the influence of gas phase NO2 on the NOx storage efficiency two different pre-catalysts were used: One with excellent NO oxidation activity to produce a high NO2 concentration and another pre-catalyst without NO oxidation activity and therefore high NO concentration at the NO x storage catalyst inlet. Both pre-catalyst had excellent HC and CO conversion efficiency and therefore the CO and HC concentration at the NO x storage catalyst inlet was practically zero. No lean NO x reduction was observed. Under that conditions, experiments with NO x storage catalysts of different length show that a high NO2 inlet concentration did not enhance the NO x storage efficiency. Moreover, we observed reduction of NO2 to NO over the NOx storage catalyst. However, in presence of a high NO inlet concentration NO2 formation was observed which may proceed parallel to NO x storage.  相似文献   

3.
Isothermal storage and reduction of NO2 with CO, C3H6 and H2 as reducing agents on a lean NO x adsorber was investigated by temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies. The reduction of NO x was clearly favoured with H2 as reducing agent. Carbon monoxide and C3H6 showed fairly low reduction of NO x . The NO x reduction at low temperatures with H2 as reducing agent was found to be effective, clearly much more effective than for CO.  相似文献   

4.
FTIR and pulse thermal analysis were applied to investigate catalysts containing Pt (1 wt%)/Ba (17 wt%) supported on -Al2O3, SiO2 and ZrO2. The aim was to learn how the support material affects the thermal stability of barium carbonate and its activity in the reaction to bulk Ba(NO3)2. The lower thermal stability of BaCO3 in alumina supported samples was found to influence the formation of barium nitrate during the NO x storage process. Quantification of Ba(NO3)2 formed during NO x storage indicated that for alumina supported catalysts only ca. 30% of barium present in the sample is involved in the storage process. The low thermal stability found for alumina supported barium nitrite excludes its role in the formation of barium nitrate during interaction of NO x with the catalyst at 300 °C. The studies indicate that -Al2O3 plays a major role in influencing the thermal stability of BaCO3 and Ba(NO3)2. This finding seems to be relevant for the higher activity of -Al2O3-supported catalysts in NO x storage reduction reactions.  相似文献   

5.
The NO x storage concept has been studied experimentally and by two differently detailed numerical simulation models. The first detailed model simulates the concentration fronts of the solid components in the barium particles. It shows the slow, diffusion-hindered formation of dense nitrate layers around barium nanoparticles during NO x storage and their rapid break-up during regeneration. Based upon this knowledge a new simplified model was developed which is able to describe well the storage and regeneration and to explain the main chemical and physical processes in the NO x storage catalyst.  相似文献   

6.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

7.
Several nitrogen compounds can be produced during the regeneration phase in periodically operated NOx storage and reduction catalyst (NSRC) for conversion of automobile exhaust gases. Besides the main product N2, also NO, N2O, and NH3 can be formed, depending on the regeneration phase length, temperature, and gas composition. This contribution focuses on experimental evaluation of the NOx reduction dynamics and selectivity towards the main products (NO, N2 and NH3) within the short rich phase, and consequent development of the corresponding global reaction-kinetic model. An industrial NSRC monolith sample of PtRh/Ba/CeO2/ -Al2O3 type is employed in nearly isothermal laboratory micro-reactor. The oxygen and NOx storage/reduction experiments are performed in the temperature range 100–500 °C in the presence of CO2 and H2O, using H2, CO and C3H6 as the reducing agents.The spatially distributed NSRC model developed earlier is extended by the following reactions: NH3 is formed by the reaction of H2 with NOx and it can further react with oxygen and NOx deposited on the catalyst surface, producing N2. Considering this scheme with ammonia as an active intermediate of the NOx reduction, a good agreement with experiments is obtained in terms of the NOx reduction dynamics and selectivity. A reduction front travelling in the flow direction along the reactor is predicted, with the NH3 maximum on the moving boundary. When the front reaches the reactor outlet, the NH3 peak is observed in the exhaust gas. It is assumed that the ammonia formation during the NOx reduction by CO and HCs at higher temperatures proceed via the water gas shift and steam reforming reactions producing hydrogen. It is further demonstrated that oxygen storage effects influence the dynamics of the stored NOx reduction. The temperature dependences of the outlet ammonia peak delay and the selectivity towards NH3 are correlated with the effective oxygen and NOx storage capacity.  相似文献   

8.
Flow reactor experiments and X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the importance of platinum oxide formation on Pt/BaO/Al2O3 NO x storage catalysts during reactions conditions. The reaction studied was NO(g) + 1/2 O2(g) NO2(g). During NO2 exposure of the catalyst the NO2 dissociation rate decreased during the reaction. This activity decrease with time was also studied with XPS and it was found to be due to platinum oxide formation. The influence of sulphur exposure conditions on the performance of the NO x storage catalysts was studied by exposing the samples to lean and/or rich gas mixtures, simulating the conditions in a mixed lean application, containing SO2. The main results show that all samples are sensitive to sulphur and that the deactivation proceeds faster when SO2 is present in the feed under rich conditions than under lean or continuous SO2 exposure. Additionally, the influence of the noble metals present in the catalysts was investigated regarding sulphur sensitivity and it was found that a combination of platinum and rhodium seems to be preferable to retain high performance of the catalyst under SO2 exposure and subsequent regeneration. Finally, the behaviour of micro-fabricated model NO x storage catalysts was studied as a function of temperature and gas composition with area-resolved XPS. These model catalysts consisted of a thin film of Pt deposited on one-half of a BaCO3 pellet. It was found that the combination of SO2 and O2 resulted in migration of Pt on the BaCO3 support up to one mm away from the Pt/BaCO3 interface.  相似文献   

9.
The effect of the addition of hydrogen on the SCR of NO x with a hydrocarbon reaction was investigated. It was found that hydrogen had a remarkable effect on the temperature range over which NO x could be reduced during the SCR reaction with octane. Reduction of NO x was initiated at as low a temperature as 100 °C and >95% NO x conversion was achieved over a temperature range of 200–450 °C. Hydrogen has the effect of activating octane at lower temperatures and also promotes the oxidation of NO to NO2 in the absence of hydrocarbon. Transient kinetic and in situ DRIFTS measurements indicated that hydrogen has a direct role in the reaction mechanism by either promoting the formation and storage of an organic C = N species which can then readily reduce NO x and/or removing a species which acts as a poison to the SCR reaction at low temperatures.  相似文献   

10.
The NO storage properties of MnO x /support materials (5–50 wt% MnO x loading) was experimentally investigated in the presence of O2 and H2O between 50 and 700 °C applying a non-isothermal temperature-programmed method. In dependence on MnO x loading and NO supply, the materials show an intermediate decrease of NO storage capacity between 200 and 300 °C. This effect is caused by decomposition of surface nitrites with release of NO into the gas phase as proved by in situ DRIFT measurement. The interpretation is corroborated by modelling of the underlying adsorption/desorption reaction steps, considering the different thermal stability of nitrite/nitrate surface species.  相似文献   

11.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

12.
In this work, we investigated the NOx storage behavior of Pt/BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt/BaO/CeO2 sample demonstrated slightly higher NOx uptake in the entire temperature range studied compared with Pt/BaO/γ-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to 3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600 °C on the ceria-based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly formed BaS phase into large crystallites. XPS results revealed the presence of about five times more residual sulfur after reductive de-sulfation at 600 °C on the alumina-based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria-based catalysts have (a) much higher sulfur tolerance and (b) excellent resistance against Pt sintering when they are compared to the widely used alumina-based catalysts.  相似文献   

13.
The stabilization of Co-mordenite catalysts through lanthanum exchange is reported here. The effect of exchange order and calcination conditions upon the reduction of NOx to N2 at 500 °C was tracked during 400 h on a stream containing NOx, CH4, O2 and 10% H2O. Both the fresh and used catalysts were characterized through TPR, Raman spectroscopy, FTIR spectroscopy using CO as probe molecule, and XPS. These techniques revealed that the CoLa-mordenite catalysts which were not affected by the severe hydrothermal treatment showed no sign of Co or La migration out of the exchange positions. Instead, those that rapidly deactivated showed the formation of cobalt oxides and, in some cases, the migration of the cations to other exchange positions. The presence of exchanged lanthanum seems to preserve the integrity of the zeolite structure preventing the migration of cobalt ions with the subsequent formation of cobalt oxides which favors the reaction of methane with O2, thus decreasing N2 production.  相似文献   

14.
The NO x storage and reduction approach was applied on a full-scale engine rig under stationary operation. NO x reduction experiments were performed and a catalyst model developed and tested. The exhaust system was equipped with a bypass system. A NO x reduction of 25–53% was achieved. At low temperature, higher values were reached when the exhaust gas bypass was longer than the injection period.  相似文献   

15.
Reduction of nitrogen oxides (NOx) in a lean exhaust gases has become one of the most important environmental concerns. This study compared the performances of DeNOx and the properties of silver/mesoporous aluminosilica synthesized by different methods. Silver nanoparticles were obtained after calcination of the materials prepared by incipient wetness or by the excess solvent impregnation of Al-SBA-15 support by silver nitrate. On the other hand, the silver nitrate was introduced on the synthesis gel of SBA-15. The solid product was used as support to deposit aluminium. The effect of synthesis method on silver incorporation and the porous structure of the resulting solids has been examined. Some techniques had been applied, such as: elemental analysis, X-ray diffraction (XRD), N2 sorption measurements and Transmission Electron Microscopy (TEM). The nature of silver species in these catalysts was investigated by XPS measurements, high angle XRD, high resolution TEM and TPR/H2 (temperature-programmed reduction). The resulting materials were tested in the selective catalytic reduction of NOx by ethanol in the presence of oxygen. Finally, the effect of H2 on the DeNOx activity was also investigated.The impregnation method of Al-SBA-15 by silver nitrate influences the size, the location of the particles and the catalytic activity. To maintain a higher DeNOx activity, the percentage of aluminium loading and the feed of H2 gases should be increased.  相似文献   

16.
The use of materials based on hydrotalcites as NOx storage/reduction (NSR) catalysts has been investigated, examining their activity at low temperature and their resistance to poisons such as H2O and SO2. The results obtained show that catalysts derived from Mg/Al hydrotalcites containing copper or cobalt is active at low temperatures, specially the samples containing 10 or 15% of Co. The addition of 1 wt% of transition metals with redox properties such as Pt, Pd, V and Ru to the hydrotalcite increases its activity because the combination of the redox properties of these metals and the acid-base properties of the hydrotalcite. The best results were obtained with the catalyst derived from a hydrotalcite with a molar ratio Co/Mg/Al = 15/60/25 and containing 1 wt% V. This material shows a higher activity, at low temperatures and in the presence of H2O and SO2, than a Pt–Ba/Al2O3 reference catalyst.  相似文献   

17.
The storage of NO x under lean conditions in model NO x storage catalysts as well as the deactivation by sulphur have been studied. We find that NO2 plays an important role in the storage mechanism as an oxidising agent. Two different mechanisms for this are discussed: the formation of surface peroxides and the oxidation of nitrites to nitrates. FTIR studies show that NO x is stored as surface nitrates. The sulphur deactivation is found to be more severe when SO2 is added during the rich phase than when SO2 is added during the lean period. FTIR shows the formation of bulk sulphates both under lean and rich conditions.  相似文献   

18.
19.
NOx storage performances have been investigated on a Pt/Ba/Al2O3 catalyst by comparison using two types of non-thermal plasma (NTP) reactor: the “PDC system” reactor and the “PFC system” reactor. In the PDC system, the catalyst was placed in the discharge space and was activated by the plasma directly, whereas in the PFC system, the plasma reactor was followed by the catalyst. The results showed that the NOx storage capacity (NSC) of the Pt/Ba/Al2O3 catalyst was significantly enhanced by the non-thermal plasma in the PDC and PFC system, and the PDC system exhibited better promotional effect than the PFC system in the temperature range of 100–300 °C. The NSC of the catalyst was increased with the increase of the input energy density both in the PDC and PFC system due to the higher NO oxidation at higher input energy density. It was also found that the ionic wind induced by plasma in the PDC system enhanced the quantity of the NO adsorbed onto the catalyst surface and therefore could react with the O-radical to form more NO2, and thus promote the formation of nitrate on the catalyst.  相似文献   

20.
This Synthetic Gas Bench (SGB) study focuses on the effect of cell geometry and wall thickness on the gasoline NO x trap functionality. The data show that besides a NO x trap efficiency improvement, hexagonal cells increase the sulfur resistance of the NO x trap. This feature is explained by the different wash-coat distributions in the hexagonal channels compared to square ones. The effect of lean/rich fast switching (wobbling) during desulfation was investigated and the SO2/H2S selectivity was studied: the combination of hexagonal cells and a wobbling desulfation strategy improves the H2S/SO2 selectivity by reducing the amount of H2S formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号