首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An asynchronous P300 BCI with SSVEP-based control state detection   总被引:1,自引:0,他引:1  
In this paper, an asynchronous brain-computer interface (BCI) system combining the P300 and steady-state visually evoked potentials (SSVEPs) paradigms is proposed. The information transfer is accomplished using P300 event-related potential paradigm and the control state (CS) detection is achieved using SSVEP, overlaid on the P300 base system. Offline and online experiments have been performed with ten subjects to validate the proposed system. It is shown to achieve fast and accurate CS detection without significantly compromising the performance. In online experiments, the system is found to be capable of achieving an average data transfer rate of 19.05 bits/min, with CS detection accuracy of about 88%.  相似文献   

2.
针对运动想象脑电信号(EEG)的非线性、非平稳特点,该文提出一种结合条件经验模式分解(CEMD)和串并行卷积神经网络(SPCNN)的脑电信号识别方法。在CEMD过程中,采用各阶固有模式分量(IMF)与原始信号的相关性系数作为第1个IMF筛选条件,在此基础上,提出各阶IMF之间的相对能量占有率作为第2个IMF筛选条件。此外,为了考虑脑电信号各个通道之间的特征和突出每个通道内的特征,该文提出SPCNN网络模型对进行CEMD过程后的脑电信号进行分类。实验结果表明,在自行采集的脑电数据集上平均识别率达到94.58%。在公开数据集BCI competition IV 2b上平均识别率达到82.13%,比卷积神经网络提高了3.85%。最后,在自行设计的智能轮椅脑电控制平台上进行了轮椅前进、左转和右转在线控制实验,验证了该文算法对脑电信号识别的有效性。  相似文献   

3.
Brain-computer interfaces require effective online processing of electroencephalogram (EEG) measurements, e.g., as a part of feedback systems. We present an algorithm for single-trial online classification of imaginary left and right hand movements, based on time-frequency information derived from filtering EEG wideband raw data with causal Morlet wavelets, which are adapted to individual EEG spectra. Since imaginary hand movements lead to perturbations of the ongoing pericentral mu rhythm, we estimate probabilistic models for amplitude modulation in lower (10 Hz) and upper (20 Hz) frequency bands over the sensorimotor hand cortices both contra- and ipsilaterally to the imagined movements (i.e., at EEG channels C3 and C4). We use an integrative approach to accumulate over time evidence for the subject's unknown motor intention. Disclosure of test data labels after the competition showed this approach to succeed with an error rate as low as 10.7%.  相似文献   

4.
A brain-computer interface (BCI) is a communication system that allows to control a computer or any other device thanks to the brain activity. The BCI described in this paper is based on the P300 speller BCI paradigm introduced by Farwell and Donchin. An unsupervised algorithm is proposed to enhance P300 evoked potentials by estimating spatial filters; the raw EEG signals are then projected into the estimated signal subspace. Data recorded on three subjects were used to evaluate the proposed method. The results, which are presented using a Bayesian linear discriminant analysis classifier, show that the proposed method is efficient and accurate.  相似文献   

5.
张全羚  欧阳蕊  陈文伟  吴小培 《信号处理》2019,35(10):1690-1699
目前,运动想象脑-机接口( motor imagery brain computer interface,MIBCI) 的离线分析和研究相对比较成熟,但是异步在线MIBCI始终具有挑战性。针对在线BCI系统的识别率和控制方式,提出了利用共空间模式(common spatial pattern,CSP)算法对运动想象(motor imagery,MI)进行特征提取并结合alpha波进行异步控制。构建了一种简单实用的自主控制小球运动MIBCI实验系统。有四名受试者参加了在线实验,其中有两名受试者在线运动想象识别正确率最高能达到100%。实验结果验证了本文所建系统的可行性和实用性。   相似文献   

6.
A signal subspace approach for extracting visual evoked potentials (VEPs) from the background electroencephalogram (EEG) colored noise without the need for a prewhitening stage is proposed. Linear estimation of the clean signal is performed by minimizing signal distortion while maintaining the residual noise energy below some given threshold. The generalized eigendecomposition of the covariance matrices of a VEP signal and brain background EEG noise is used to transform them jointly to diagonal matrices. The generalized subspace is then decomposed into signal subspace and noise subspace. Enhancement is performed by nulling the components in the noise subspace and retaining the components in the signal subspace. The performance of the proposed algorithm is tested with simulated and real data, and compared with the recently proposed signal subspace techniques. With the simulated data, the algorithms are used to estimate the latencies of P(100), P(200), and P(300) of VEP signals corrupted by additive colored noise at different values of SNR. With the real data, the VEP signals are collected at Selayang Hospital, Kuala Lumpur, Malaysia, and the capability of the proposed algorithm in detecting the latency of P(100) is obtained and compared with other subspace techniques. The ensemble averaging technique is used as a baseline for this comparison. The results indicated significant improvement by the proposed technique in terms of better accuracy and less failure rate.  相似文献   

7.
To control a cursor on a monitor screen, a user generally needs to perform two tasks sequentially. The first task is to move the cursor to a target on the monitor screen (termed a 2-D cursor movement), and the second task is either to select a target of interest by clicking on it or to reject a target that is not of interest by not clicking on it. In a previous study, we implemented the former function in an EEG-based brain-computer interface system using motor imagery and the P300 potential to control the horizontal and vertical cursor movements, respectively. In this study, the target selection or rejection functionality is implemented using a hybrid feature from motor imagery and the P300 potential. Specifically, to select the target of interest, the user must focus his or her attention on a flashing button to evoke the P300 potential, while simultaneously maintaining an idle state of motor imagery. Otherwise, the user performs left-/right-hand motor imagery without paying attention to any buttons to reject the target. Our data analysis and online experimental results validate the effectiveness of our approach. The proposed hybrid feature is shown to be more effective than the use of either the motor imagery feature or the P300 feature alone. Eleven subjects attended our online experiment, in which a trial involved sequential 2-D cursor movement and target selection. The average duration of each trial and average accuracy of target selection were 18.19 s and 93.99% , respectively, and each target selection or rejection event was performed within 2 s.  相似文献   

8.
Traditional methods for removing ocular artifacts (OAs) from electroencephalography (EEG) signals often involve a large number of EEG electrodes or require electrooculogram (EOG) as the reference, these constraints make subjects uncomfortable during the acquisition process and increase the complexity of brain-computer interfaces (BCI). To address these limitations, a method combining a convolutional autoencoder (CAE) and a recursive least squares (RLS) adaptive filter is proposed. The proposed method consists of offline and online stages. In the offline stage, the peak and local mean of the four-channel EOG signals are automatically extracted to obtain the CAE model. Once the model is trained, the EOG channels are no longer needed. In the online stage, by using the CAE model to identify the OAs from a single-channel raw EEG signal, the identified OAs and the given raw EEG signal are used as the reference and input for an RLS adaptive filter. Experiments show that the root mean square error (RMSE) of the CAE-RLS algorithm and independent component analysis (ICA) are 1.253 3 and 1.254 6 respectively, and the power spectral density (PSD) curve for the CAE-RLS is similar to the original EEG signal. These experimental results indicate that by using only a couple of EEG channels, the proposed method can effectively remove OAs without parallel EOG records and accurately reconstruct the EEG signal. In addition, the processing time of the CAE-RLS is shorter than that of ICA, so the CAE-RLS algorithm is very suitable for BCI system.  相似文献   

9.
李庆  薄华 《信号处理》2018,34(8):991-997
针对目前在不同色彩感知中的脑电信号识别方面的研究还不多见,本文提出采用随机森林算法对信号的时域特征和频域特征进行最优组合的方法对不同色彩感知中的脑电信号进行识别。首先采用小波变换,对脑电信号进行7层分解,提取脑电信号在delta、theta、alpha和beta节律频带上的小波能量,并结合脑电信号在时域上的统计量偏度和峰度组成特征向量。然后通过基于随机森林的特征选择算法提取最优的特征组合方案,删除冗余的特征量。使用自适应增强算法进行分类识别,识别的平均正确率可达到85.07%。该结果表明使用本文所提出的特征提取与选择方法用于不同色彩感知中的脑电信号识别上是可行的,并且能够取得较好的识别率。   相似文献   

10.
In this paper, novel methods for detecting steady-state visual evoked potentials using multiple electroencephalogram (EEG) signals are presented. The methods are tailored for brain-computer interfacing, where fast and accurate detection is of vital importance for achieving high information transfer rates. High detection accuracy using short time segments is obtained by finding combinations of electrode signals that cancel strong interference signals in the EEG data. Data from a test group consisting of 10 subjects are used to evaluate the new methods and to compare them to standard techniques. Using 1-s signal segments, six different visual stimulation frequencies could be discriminated with an average classification accuracy of 84%. An additional advantage of the presented methodology is that it is fully online, i.e., no calibration data for noise estimation, feature extraction, or electrode selection is needed.  相似文献   

11.
In this paper, we propose a method for the analysis and classification of electroencephalogram (EEG) signals using EEG rhythms. The EEG rhythms capture the nonlinear complex dynamic behavior of the brain system and the nonstationary nature of the EEG signals. This method analyzes common frequency components in multichannel EEG recordings, using the filter bank signal processing. The mean frequency (MF) and RMS bandwidth of the signal are estimated by applying Fourier-transform-based filter bank processing on the EEG rhythms, which we refer intrinsic band functions, inherently present in the EEG signals. The MF and RMS bandwidth estimates, for the different classes (e.g., ictal and seizure-free, open eyes and closed eyes, inter-ictal and ictal, healthy volunteers and epileptic patients, inter-ictal epileptogenic and opposite to epileptogenic zone) of EEG recordings, are statistically different and hence used to distinguish and classify the two classes of signals using a least-squares support vector machine classifier. Experimental results, with 100 % classification accuracy, on a real-world EEG signals database analysis illustrate the effectiveness of the proposed method for EEG signal classification.  相似文献   

12.
Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.  相似文献   

13.
We propose an approach to analyze data from the P300 speller paradigm using the machine-learning technique support vector machines. In a conservative classification scheme, we found the correct solution after five repetitions. While the classification within the competition is designed for offline analysis, our approach is also well-suited for a real-world online solution: It is fast, requires only 10 electrode positions and demands only a small amount of preprocessing.  相似文献   

14.
Extracting reach information from brain signals is of great interest to the fields of brain-computer interfaces (BCIs) and human motor control. To date, most work in this area has focused on invasive intracranial recordings; however, successful decoding of reach targets from noninvasive electroencephalogram (EEG) signals would be of great interest. In this article, we show that EEG signals contain sufficient information to decode target location during a reach (Experiment 1) and during the planning period before a reach (Experiment 2). We discuss the application of independent component analysis and dipole fitting for removing movement artifacts. With this technique we get similar classification accuracy for classifying EEG signals during a reach (Experiment 1) and during the planning period before a reach (Experiment 2). To the best of our knowledge, this is the first demonstration of decoding (planned) reach targets from EEG. These results lay the foundation for future EEG-based BCIs based on decoding of planned reaches.  相似文献   

15.
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.  相似文献   

16.
The development of asynchronous braincomputer interface (BCI) based on motor imagery (MI) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition III, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.  相似文献   

17.
In this paper we present a multisubscriber variable-rate sampling hybrid companding delta modulation (HCDM) system for simultaneous transmission of several speech signals. This system employs both the statistical multiplexing and variable-rate sampling schemes. It transmits speech signals synchronously at a fixed rate using a buffer. In this system the sampling rate of each subscriber is varied according to the speech activity and the status of buffer occupancy, and only the speech portion is coded for transmission. To optimize the system performance within the allowed maximum transmission delay (300 ms), an efficient dynamic buffer control algorithm is proposed. When the number of subscribers is six and the transmission rate for each subscriber is 16 kbits/s, the proposed system yields a performance improvement of about 10 dB over the conventional single-subscriber HCDM system. The buffer delay in this case is 150 ms, which gives a perceptually negligible effect.  相似文献   

18.
Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency-flat-fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise ratio (SNR) when properly selected baseband waveforms are employed.  相似文献   

19.
A brain-controlled switch for asynchronous control applications   总被引:6,自引:0,他引:6  
Asynchronous control applications are an important class of application that has not received much attention from the brain-computer interface (BCI) community. This work provides a design for an asynchronous BCI switch and performs the first extensive evaluation of an asynchronous device in attentive, spontaneous electroencephalographic (EEG). The switch design [named the low-frequency asynchronous switch design (LF-ASD)] is based on a new feature set related to imaginary movements in the 1-4 Hz frequency range. This new feature set was identified from a unique analysis of EEG using a bi-scale wavelet. Offline evaluations of a prototype switch demonstrated hit (true positive) rates in the range of 38%-81% with corresponding false positive rates in the range of 0.3%-11.6%. The performance of the LF-ASD was contrasted with two other ASDs: one based on mu-power features and another based on the outlier processing method (OPM) algorithm. The minimum mean error rates for the LF-ASD were shown to be significantly lower than either of these other two switch designs.  相似文献   

20.
In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号