首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a bio‐based flame retardant, casein, was incorporated into poly(lactic acid) (PLA) matrix by melt compounding in order to improve the fire resistance and sustain the biodegradable character of PLA simultaneously. The fire performance of PLA composites was evaluated by limiting oxygen index, UL‐94 vertical burning, and cone calorimeter tests, respectively. The results indicated that the introduction of 20% casein increased the limiting oxygen index value of PLA composites from 20.0% to 32.2%, upgraded the UL‐94 rating from no rating to V‐0, and decreased the peak heat release rate from 779 to 639 kW/m2. The decomposition products of PLA composites were analyzed by Fourier transform infrared, and the morphology of the char after combustion was observed by scanning electron microscopy. It was suggested that casein took effects in both gas phase by releasing non‐flammable gases (such as NH3 and H2O) and condensed phase by the formation of protective char layers. However, the presence of casein in PLA induced an unavoidable deterioration in the mechanical performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46599.  相似文献   

2.
Poly(lactic acid)/hydroxyapatite (PLA/HAP) nanocomposite films with various compositions, 2 ? 70 parts HAP per 100 of the PLA polymer (pph), were made via the solution casting method. Transmission electron microscopy images of the PLA/HAP films exhibited spherical particles in the size range from nearly 10 nm to 100 nm dispersed within the polymeric matrix. Fourier transform infrared spectra of the nanocomposites revealed an interaction between PLA and HAP nanoparticles by carbonyl group peak shift. Incorporation of HAP nanoparticles in the PLA matrix stimulated crystal growth verified by differential scanning calorimetry. The films irradiated with γ‐rays at a dose of 30 kGy also showed an increase in crystallinity. The X‐ray diffraction patterns of the irradiated PLA exhibited two new peaks at around 16° and 19°, assigned to the α crystalline phase of PLA; these were absent in the unirradiated nanocomposites. Significant ductile behavior was observed in both irradiated and unirradiated PLA nanocomposites containing 2 and 10 pph of HAP. However, the irradiated nanocomposites had higher tensile strength. © 2013 Society of Chemical Industry  相似文献   

3.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

4.
Poly(L ‐lactic acid) (PLLA) fibers have been extensively studied for various applications. In this work, PLLA and poly(vinyl alcohol) (PVA) were prepared by coelectrospinning to form composite nonwoven materials. The structures and diameter distribution of the electrospun PLLA/PVA composite nonwovens were examined by atomic force microscopy (AFM) and scanning electronic microscope (SEM). The wetting behavior of the electrospun PLLA/PVA composite nonwovens was also investigated using static contact angles and dynamic water adsorption measurements. It was observed that the addition of PVA in the electrospun PLLA/PVA composite nonwovens significantly alerted the contact angles and water adsorption of the composite materials. It was also found that the increase in the content of PLLA led to the increase in the surface contact angle and decrease in water adsorption of the electrospun PLLA/PVA nonwoven materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   

6.
In this study, we examined the role of environmental parameters and physical structure in the aging process of poly(lactic acid) (PLA). The role of heating history on the aging behavior of the material was also investigated. PLA samples with a D ‐content of 4.25% were exposed to a relative humidity of 80% at three different temperatures, 20, 40, and 50°C (below the glass‐transition temperature of the material), at various aging periods of 30, 60, 80, 100, and 130 days. Selected samples were subjected to two consecutive heating runs. The stability of PLA was monitored by a number of techniques, including size exclusion chromatography, differential scanning calorimetry, dynamic mechanical analysis, and tensile measurements. The initial thermal processing (150°C) of the material resulted in an overall molecular weight reduction. A substantial lowering of properties was observed for PLA samples aged at 20°C for 30 days. No further loss of properties was observed for samples aged up to 40°C for several time intervals. A major portion (80–90%) of the induced changes in the tensile properties could be reversed after drying. At 50°C and 100 days of aging, a sharp decrease in the overall properties was noticed. The results seem to confirm the earlier finding that PLA degradation driven by hydrolysis needs a higher temperature (>50°C) in combination with ample time to take place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A novel bio‐based polyamide, poly(pentamethylene oxamide) (PA52), with high molecular weight has been prepared from dibutyl oxalate and renewable monomer of 1,5‐pentanediamine by a two‐step polymerization procedure. The chemical structures are analyzed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy while the properties are evaluated by differential scanning calorimetry, thermogravimetric analysis, and water uptake measurements for the obtained PA52. The results reveal that PA52 possesses distinguished properties such as high temperature resistance, excellent crystallizability and low water absorption. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

8.
In an earlier study, scaffolds of biodegradable poly(glycerol sebacate) (PGS)/poly(l ‐lactic acid) (PLLA) core/shell fibres had been fabricated using a core/shell electrospinning method, and the scaffolds were found to have mechanical properties similar to those of natural soft tissues, excellent cytocompatibility and slow degradation rate. In this paper, PGS/PLLA core/shell fibre mats with tuneable degrees of fibre alignment were fabricated using core/shell electrospinning with a rotating fibre collection mandrel. An increase in the rotational speed raised the degree of fibre alignment in the fibre mats. Single and cyclic tensile testing of the mats showed that an increase in the fibre alignment raised the modulus, resilience, ultimate tensile strength (UTS) and elongation up to a maximum at 1000 or 1500 rpm, but the resilience, UTS and elongation decreased when the rotational speed was further raised to 2000 rpm. Nonlinearly elastic biomaterials with a large range of mechanical properties were successfully fabricated using this method and the aligned fibre structure may be capable of guiding the growth of attached cells. © 2016 Society of Chemical Industry  相似文献   

9.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Crystalline dicarboxylated poly(L ‐lactic acid)s (dcPLLAs) with number‐average molecular weights (Mn's) of 103 to 104 g/mol were synthesized via the melt polycondensation of L ‐lactic acid (LLA) in the presence of succinic anhydride (SAD), with tin(II) chloride and toluene‐4‐sulfonic acid as binary catalysts. They were characterized by end‐group titration, 1H‐NMR, differential scanning calorimetry, and wide‐angle X‐ray diffraction. The terminal COOH percentage reached over 98%, and the molecular weight could be controlled by the molar ratio of LLA to SAD. The thermal behaviors depended on the molecular weight. The poly(L ‐lactic acid)s (PLLAs) crystallized slowly for Mn ≤ 2000 but quickly for Mn ≥ 4000. The crystallinity increased from 27 to 40% when Mn grew from 4000 to 10,000. With comparison to ordinary PLLA, the dcPLLA had the same crystallization structure but a slightly lower crystallizability. The glass‐transition temperature was clearly higher than that of amorphous dcPLLAs. With a controllable molecular weight, high COOH percentage, and crystallinity, the dcPLLA with Mn ≥ 4000 appeared to be a suitable prepolymer for the preparation of high‐molecular‐weight crystalline PLLA via chain extension. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
In order to explore the origin of the higher melting point of poly(lactic acid) (PLA) stereocomplex crystal (SC) than that of homo‐crystal (HC), the equilibrium melting point () differential between SC and HC was determined using the Hoffman–Weeks method. The results showed that, for PLA samples with Mn around 16, 20 and 65 kg mol?1, the differential between SC and HC is around 36, 42 and 55 °C, respectively. Thus, the higher melting point of SC compared to HC does not stem from differential only. For PLA samples with lower Mn, the supercooling differential between poly(l ‐lactic acid) (PLLA)/poly(d ‐lactic acid) (PDLA) blends and PLLA is smaller than that with higher Mn, which means chain diffusion behavior is crucial for SC formation in PLLA/PDLA blends. The fact that the SC adopts the intermolecular parallel arrangement rather than the adjacent chain folding is verified by the greater slope of the melting point of SC versus crystallization temperature fitting curve when Mn is relative higher. © 2018 Society of Chemical Industry  相似文献   

12.
This article investigated the effects of electron beam (EB) irradiation on poly(D ,L ‐lactic acid)‐b‐poly(ethylene glycol) copolymer (PLEG) and poly(L ‐lactic acid) (PLLA). The dominant effect of EB irradiation on both PLEG and PLLA was chain scission. With increasing dose, recombination reactions or partial crosslinking of PLEG can occur in addition to chain scission, but there was no obvious crosslinking for PLLA at doses below 200 kGy. The chain scission degree of irradiated PLEG and PLLA was calculated to be 0.213 and 0.403, respectively. The linear relationships were also established between the decrease in molecular weight with increasing dose. Elongation at break of the irradiated PLEG and PLLA decreased significantly, whereas the tensile strength and glass transition temperature of PLLA decreased much more significantly compared with PLEG. The presence of poly(ethylene glycol) (PEG) chain segment in PLEG was the key factor in its greater stability to EB irradiation compared with PLLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
This work presented the influence of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite (BTN) on improving the mechanical and thermal properties of poly(lactic acid) (PLA). PLA was initially melt mixed with TPEE at six different loadings (5–30 wt%) on a twin screw extruder and then injection molded. The mechanical tests revealed an increasing impact strength and elongation at break with increasing TPEE loading, but a diminishing Young's modulus and tensile strength with respect to pure PLA. The blend at 30 wt% TPEE provided the optimum improvement in toughness, exhibiting an increase in the impact strength and elongation at break by 3.21- and 10.62-fold over those of the pure PLA, respectively. Scanning electron microscopy analysis illustrated a ductile fractured surface of the blends with the small dispersed TPEE domains in PLA matrix, indicating their immiscibility. The 70/30 (wt/wt) PLA/TPEE blend was subsequently filled with three loadings of BTN (1, 3, and 5 parts by weight per hundred of blend resin [phr]), where the impact strength, Young's modulus, tensile strength and thermal stability of all the blends were improved, while the elongation at break was deteriorated. Among the three nanocomposites, that with 1 phr BTN formed exfoliated structure and so exhibited the highest impact strength, elongation at break, and tensile strength compared to the other intercalated nanocomposites. Moreover, the addition of BTN was found to increase the thermal stability of the neat PLA/TPEE blend due to the barrier properties and high thermal stability of BTN.  相似文献   

16.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The UV‐excitable fluorescent poly(lactic acid) (PLA) fibers were spun by the traditional melt spinning process, and the effects of the fluorescent powder content (w(FP)) and draw ratio (DR) on the structure and properties of the fluorescent PLA fibers were investigated, respectively. The results showed that the emission spectra of fluorescent PLA fibers were peaked at 530 nm after UV excitation, indicating the PLA fibers would emit green light under UV light. With the increasing of w(FP), the relative fluorescence intensity of PLA fibers increased gradually, whereas more and larger protrusions were formed on the fiber surface due to the agglomeration of fluorescent powder, both the crystallinity and mechanical properties of fluorescent PLA fiber showed the decreasing trend with the increase of w(FP). With the increase of DR, the tensile strength of fluorescent PLA fibers increased gradually, whereas the relative fluorescence intensity of PLA fibers increased firstly and then decreased, and the highest fluorescence intensity was obtained when the DR was 3.6. In addition, the confocal laser scanning microscope can be used well to simulate the 3D distribution of fluorescent powder among the PLA fibers. POLYM. ENG. SCI., 56:373–379, 2016. © 2016 Society of Plastics Engineers  相似文献   

18.
The effect of the mixing condition in a mill‐type mixer on the thermal property and the crystal formation of the poly(l ‐lactide)/poly(d ‐lactide) blends is investigated. The blends melt‐mixed at 200 and 210 °C under application of a high shear flow tend to show a single melting peak of the stereocomplex crystal (SC) in the differential scanning calorimetry first and second heating processes without indicating the trace of the melting of homo‐chiral crystal. The mixing at an elevated temperature causes a serious thermal degradation. Further kneading of the blends at an elevated temperature higher than Tm of SC causes the transesterification between the same enatiomeric chains forming block copolymers of l ‐ and d ‐chains. This block copolymer acts as a nucleating agent of SC and the compatibilizing agent between poly(l ‐lactide) and poly(d ‐lactide) and promotes the formation of SC. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45489.  相似文献   

19.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

20.
This paper reviews the most important factors affecting the degradation and drug‐release rate of bio‐erodible polymers for better control in biomedical applications. There are several factors that influence the overall rate of degradation, in addition to pH and copolymer composition. In general, polymer degradation is accelerated by greater hydrophilicity in the backbone or end groups, lesser crystallinity, lower average molecular weight, and smaller size of the finished device. At the moment, literature reflects contradictions about the role played by chemically reactive additives, crystallinity and degradation path. Factors affecting degradation and drug‐release rate are discussed in their decreasing order of importance, including intrinsic properties of polymers and processing parameters. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号