首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide nanoparticles (TiO2NPs) are widely used in industrial and medicinal fields and in various consumer products, and their increasing use has led to an increase in the number of toxicity studies; however, studies investigating the underlying toxicity mechanism have been rare. In this study, we evaluated potential toxic effects of TiO2NPs exposure on lungs as well as the development of asthma through the ovalbumin (OVA)-induced mouse model of asthma. Furthermore, we also investigated the associated toxic mechanism. TiO2NPs caused pulmonary toxicity by exacerbating the inflammatory response, indicated by an increase in the number and level of inflammatory cells and mediators, respectively. OVA-induced asthma exposed mice to TiO2NPs led to significant increases in inflammatory mediators, cytokines, and airway hyperresponsiveness compared with those in non-exposed asthmatic mice. This was also accompanied by increased inflammatory cell infiltration and mucus production in the lung tissues. Additionally, TiO2NPs decreased the expression of B-cell lymphoma 2 (Bcl2) and the expressions of thioredoxin-interacting protein (TXNIP), phospho-apoptosis signal-regulating kinase 1, Bcl2-associated X, and cleaved-caspase 3 were escalated in the lungs of asthmatic mice compared with those in non-exposed asthmatic mice. These responses were consistent with in vitro results obtained using human airway epithelial cells. TiO2NPs treated cells exhibited an increase in the mRNA and protein expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α with an elevation of TXNIP signaling compared to non-treated cells. Moreover, pathophysiological changes induced by TiO2NP treatment were significantly decreased by TXNIP knockdown in airway epithelial cells. Overall, TiO2NP exposure induced toxicological changes in the respiratory tract and exacerbated the development of asthma via activation of the TXNIP-apoptosis pathway. These results provide insights into the underlying mechanism of TiO2NP-mediated respiratory toxicity.  相似文献   

2.
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.  相似文献   

3.
The genomic activity of vitamin D is associated with metabolic effects, and the hormone has a strong impact on several physiological functions and, therefore, on health. Among its renowned functions, vitamin D is an immunomodulator and a molecule with an anti-inflammatory effect, and, recently, it has been much studied in relation to its response against viral infections, especially against COVID-19. This review aims to take stock of the correlation studies between vitamin D deficiency and increased risks of severe COVID-19 disease and, similarly, between vitamin D deficiency and acute respiratory distress syndrome. Based on this evidence, supplementation with vitamin D has been tested in clinical trials, and the results are discussed. Finally, this study includes a biochemical analysis on the effects of vitamin D in the body’s defense mechanisms against viral infection. In particular, the antioxidant and anti-inflammatory functions are considered in relation to energy metabolism, and the potential, beneficial effect of vitamin D in COVID-19 is described, with discussion of its influence on different biochemical pathways. The proposed, broader view of vitamin D activity could support a better-integrated approach in supplementation strategies against severe COVID-19, which could be valuable in a near future of living with an infection becoming endemic.  相似文献   

4.
Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.  相似文献   

5.
Vitamin D has an immune-modulating effect on respiratory tract infections. For this reason, it has been proposed as part of the treatment in COVID-19. Furthermore, vitamin D deficiency has been associated with worse clinical outcomes of this disease. The aim of this systematic review was to determine whether vitamin D supplementation modifies the disease course. Therefore, eleven studies involving randomised clinical trials are analysed, in which groups of COVID-19 patients with or without vitamin D supplementation as part of the treatment are compared. A control group was treated with best available therapy, and in some of the clinical trials, also with a placebo. According to the outcomes, it seems that patients benefit from receiving a daily or maintained in time vitamin D dose regardless of vitamin D serum levels at the beginning of the trial. The administration of a single vitamin D dose does not seem to have any effect on the health status of these patients. However, the outcomes are heterogeneous and larger clinical trials are necessary.  相似文献   

6.
Recent works have demonstrated a significant reduction in cholesterol levels and increased oxidative stress in patients with coronavirus disease 2019 (COVID-19). The cause of this alteration is not well known. This study aimed to comprehensively evaluate their possible association during the evolution of COVID-19. This is an observational prospective study. The primary endpoint was to analyze the association between lipid peroxidation, lipid, and inflammatory profiles in COVID-19 patients. A multivariate regression analysis was employed. The secondary endpoint included the long-term follow-up of lipid profiles. COVID-19 patients presented significantly lower values in their lipid profile (total, low, and high-density lipoprotein cholesterol) with greater oxidative stress and inflammatory response compared to the healthy controls. Lipid peroxidation was the unique oxidative parameter with a significant association with the total cholesterol (OR: 0.982; 95% CI: 0.969–0.996; p = 0.012), IL1-RA (OR: 0.999; 95% CI: 0.998–0.999; p = 0.021) IL-6 (OR: 1.062; 95% CI: 1.017–1.110; p = 0.007), IL-7 (OR: 0.653; 95% CI: 0.433–0.986; p = 0.042) and IL-17 (OR: 1.098; 95% CI: 1.010–1.193; p = 0.028). Lipid abnormalities recovered after the initial insult during long-term follow-up (IQR 514 days); however, those with high LPO levels at hospital admission had, during long-term follow-up, an atherogenic lipid profile. Our study suggests that oxidative stress in COVID-19 is associated with derangements of the lipid profile and inflammation. Survivors experienced a recovery in their lipid profiles during long-term follow-up, but those with stronger oxidative responses had an atherogenic lipid profile.  相似文献   

7.
Arterial calcification is a common feature of pseudoxanthoma elasticum (PXE), a disease characterized by ABCC6 mutations, inducing a deficiency in pyrophosphate, a key inhibitor of calcium phosphate crystallization in arteries. Methods: we analyzed whether long-term exposure of Abcc6−/− mice (a murine model of PXE) to a mild vitamin D supplementation, with or without calcium, would impact the development of vascular calcification. Eight groups of mice (including Abcc6−/− and wild-type) received vitamin D supplementation every 2 weeks, a calcium-enriched diet alone (calcium in drinking water), both vitamin D supplementation and calcium-enriched diet, or a standard diet (controls) for 6 months. Aorta and kidney artery calcification was assessed by 3D-micro-computed tomography, Optical PhotoThermal IR (OPTIR) spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and Yasue staining. Results: at 6 months, although vitamin D and/or calcium did not significantly increase serum calcium levels, vitamin D and calcium supplementation significantly worsened aorta and renal artery calcification in Abcc6−/− mice. Conclusions: vitamin D and/or calcium supplementation accelerate vascular calcification in a murine model of PXE. These results sound a warning regarding the use of these supplementations in PXE patients and, to a larger extent, patients with low systemic pyrophosphate levels.  相似文献   

8.
9.
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.  相似文献   

10.
11.
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.  相似文献   

12.
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.  相似文献   

13.
The term resilience, which has been present in science for almost half a century, stands for the capacity of some system needed to overcome an amount of disturbance from the environment in order to avoid a change to another stable state. In medicine, the concept of resilience means the ability to deal with daily stress and disturbance to our homeostasis with the intention of protecting it from disturbance. With aging, the organism becomes more sensitive to environmental impacts and more susceptible to changes. Mental disturbances and a decline in psychological resilience in older people are potentiated with many social and environmental factors along with a subjective perception of decreasing health. Distinct from findings in younger age groups, mental and physical medical conditions in older people are closely associated with each other, sharing common mechanisms and potentiating each other’s development. Increased inflammation and oxidative stress have been recognized as the main driving mechanisms in the development of aging diseases. This paper aims to reveal, through a translational approach, physiological and molecular mechanisms of emotional distress and low psychological resilience in older individuals as driving mechanisms for the accelerated development of chronic aging diseases, and to systematize the available information sources on strategies for mitigation of low resilience in order to prevent chronic diseases.  相似文献   

14.
Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure–activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.  相似文献   

15.
Carnosine is an endogenous β-alanyl-L-histidine dipeptide endowed with antioxidant and carbonyl scavenger properties, which is able to significantly prevent the visible signs of aging and photoaging. To investigate the mechanism of action of carnosine on human skin proteome, a 3D scaffold-free spheroid model of primary dermal fibroblasts from a 50-year-old donor was adopted in combination with quantitative proteomics for the first time. The label free proteomics approach based on high-resolution mass spectrometry, integrated with network analyses, provided a highly sensitive and selective method to describe the human dermis spheroid model during long-term culture and upon carnosine treatment. Overall, 2171 quantified proteins allowed the in-depth characterization of the 3D dermis phenotype during growth and differentiation, at 14 versus 7 days of culture. A total of 485 proteins were differentially regulated by carnosine at 7 days, an intermediate time of culture. Of the several modulated pathways, most are involved in mitochondrial functionality, such as oxidative phosphorylation, TCA cycle, extracellular matrix reorganization and apoptosis. In long-term culture, functional modules related to oxidative stress were upregulated, inducing the aging process of dermis spheroids, while carnosine treatment prevented this by the downregulation of the same functional modules. The application of quantitative proteomics, coupled to advanced and relevant in vitro scaffold free spheroids, represents a new concrete application for personalized therapies and a novel care approach.  相似文献   

16.
Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2 levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.  相似文献   

17.
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.  相似文献   

18.
Experimental studies suggest that omega-3 may be beneficial at preventing alveolar bone loss (ABL) by modulating host immune response. The aim of this study is to evaluate the effects of omega-3 supplementation on ABL and serum oxidative biomarkers in a ligature-induced periodontitis model. Twenty-four Wistar albino rats are divided into 3 groups: control (C, n = 8); ligature-induced periodontitis (L, n = 8); and omega-3 plus ligature-induced periodontitis (O+L, n = 8). All rats are fed with ad libitum diet, and O+L group is additionally supplemented with omega-3 fish oil by oral gavage for 44 days. Experimental periodontitis is induced by placement of ligatures around the maxillary second molars of rats in L and O+L groups. ABL is measured histomorphometrically and serum 8-hydroxy-2'-deoxyguanosine, total antioxidant capacity, and total oxidant status (TOS) are analyzed. ABL is higher in L and O+L groups than the C group. Omega-3 supplementation is significantly reduced ABL in group O+L, compared to L group. Furthermore, TOS levels are lower in O+L group than L group. It is suggested that omega-3 administration may reduce ABL and serum TOS levels, which supports the antioxidant role of omega-3 on periodontal disease pathogenesis. Practical applications: Adjunctive use of omega-3 supplementation in periodontitis seems beneficial, although biochemical mechanisms underlying the conflicting results have not been completely understood. On the other hand, oxidative stress has been used as an appropriate target for host modulation therapies in periodontal disease. Omega-3 supplementation in ligature-induced periodontitis in an animal model successfully reduces alveolar bone loss by modulating serum total oxidant status, which may provide a novel pathway in periodontal disease pathogenesis.  相似文献   

19.
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号